Pregunta
upstudy study bank question image url

\( \tan x ( 1 - \cos ^ { 2 } x ) + \cos ^ { 2 } x = \frac { ( \sin x + \frac { \cos x ) ( 1 - \sin x \cos x } { \cos x } } { 3 } \)

Ask by Olson Guzman. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( x = 0 \) is a solution to the equation.

Solución

The equation provided is quite complex, and attempts to solve it directly have resulted in timeouts. Let's break it down step by step to simplify and analyze it. ### Step 1: Rewrite the Equation The original equation is: \[ \tan x (1 - \cos^2 x) + \cos^2 x = \frac{\sin x + \cos x (1 - \sin x \cos x)}{3} \] ### Step 2: Use Trigonometric Identities Recall that: \[ \tan x = \frac{\sin x}{\cos x} \] \[ 1 - \cos^2 x = \sin^2 x \] Substituting these into the equation gives: \[ \frac{\sin x}{\cos x} \sin^2 x + \cos^2 x = \frac{\sin x + \cos x (1 - \sin x \cos x)}{3} \] ### Step 3: Simplify the Left Side The left side becomes: \[ \frac{\sin^3 x}{\cos x} + \cos^2 x \] ### Step 4: Simplify the Right Side The right side can be simplified as follows: \[ \frac{\sin x + \cos x - \sin x \cos^2 x}{3} \] ### Step 5: Combine and Rearrange Now we have: \[ \frac{\sin^3 x}{\cos x} + \cos^2 x = \frac{\sin x + \cos x - \sin x \cos^2 x}{3} \] To eliminate the fraction, multiply through by \(3\cos x\): \[ 3\sin^3 x + 3\cos^3 x = \sin x \cos x + 3\cos^2 x - \sin x \cos^3 x \] ### Step 6: Rearranging the Equation Rearranging gives us: \[ 3\sin^3 x + 3\cos^3 x - \sin x \cos x - 3\cos^2 x + \sin x \cos^3 x = 0 \] ### Step 7: Solve the Simplified Equation This equation is still complex, but we can try to find specific values of \(x\) that satisfy it, such as \(x = 0, \frac{\pi}{4}, \frac{\pi}{2}, \pi\), etc. Let's evaluate the equation at these points to see if any of them are solutions. 1. **At \(x = 0\)**: \[ 3(0)^3 + 3(1)^3 - 0 - 3(1)^2 + 0 = 0 \Rightarrow 3 - 3 = 0 \quad \text{(True)} \] 2. **At \(x = \frac{\pi}{4}\)**: \[ 3\left(\frac{\sqrt{2}}{2}\right)^3 + 3\left(\frac{\sqrt{2}}{2}\right)^3 - \frac{\sqrt{2}}{2}\cdot\frac{\sqrt{2}}{2} - 3\left(\frac{\sqrt{2}}{2}\right)^2 + \frac{\sqrt{2}}{2}\left(\frac{\sqrt{2}}{2}\right)^3 = 0 \] This will require calculation. 3. **At \(x = \frac{\pi}{2}\)**: \[ 3(1)^3 + 3(0)^3 - 0 - 3(0)^2 + 0 = 0 \Rightarrow 3 \neq 0 \quad \text{(False)} \] 4. **At \(x = \pi\)**: \[ 3(0)^3 + 3(-1)^3 - 0 - 3(1)^2 + 0 = 0 \Rightarrow -3 - 3 \neq 0 \quad \text{(False)} \] ### Conclusion From the evaluations, \(x = 0\) is a solution. Further numerical or graphical methods may be needed to find additional solutions or confirm the behavior of the function. If you would like to explore specific values or methods further, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the equation, start by simplifying the left side. Remember that \(1 - \cos^2 x = \sin^2 x\). So you can rewrite the left-hand side: \[ \tan x \sin^2 x + \cos^2 x = \frac{( \sin x + \cos x)(1 - \sin x \cos x)}{3} \] You’ll want to express \(\tan x\) in terms of \(\sin x\) and \(\cos x\) which gives you \(\frac{\sin x}{\cos x}\). Substitute this into your equation and simplify both sides to find expressions with a common format. On the right side, distributing and simplifying can help isolate \(x\). Look for opportunities to apply known identities, or even consider specific angles such as 0, \(\frac{\pi}{4}\), or \(\frac{\pi}{2}\), where sine and cosine values are clean and help find potential solutions more directly. Keep your eyes out for common mistakes such as forgetting to align terms correctly during simplifications!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad