REVIOUS ANSWERS ASK YOUR TEACHER An airplane is flying in still air with an airspeed of 475 miles per hour The plane is climbing at an angle of \( 32^{\circ} \). Find the rate (in mi/hr) at which the plane is gaining altitude. (Round your answer to four decimal places.) \begin{tabular}{|} \& \( \mathrm{mi} / \mathrm{hr} \)\end{tabular}
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the rate at which the airplane is gaining altitude, you can use the sine function. The vertical component (altitude gain) can be calculated using: \[ \text{Altitude Gain Rate} = \text{Airspeed} \times \sin(\theta) \] Where: - Airspeed = 475 mi/hr - \(\theta = 32^{\circ}\) Now calculating: \[ \text{Altitude Gain Rate} = 475 \times \sin(32^{\circ}) \] \[ = 475 \times 0.5299 \quad (\text{approx. value for } \sin(32^\circ)) \] \[ \approx 251.2475 \, \text{mi/hr} \] So, the rate at which the plane is gaining altitude is approximately \( 251.2475 \, \text{mi/hr} \), rounded to four decimal places is: \[ \text{Altitude Gain Rate} \approx 251.2475 \, \text{mi/hr} \]
