Pregunta
upstudy study bank question image url

Confidence in banks: A news poll conducted in 2012 asked a random sample of 1220 adults in the United States how much confidence they had in banks and other financial institutions. A total of 156 adults said that they had a great deal of confidence. An economist claims that greater than \( 12 \% \) of U.S. adults have a great deal of confidence In banks. Can you conclude that the economist's claim is true? Use both \( \alpha=0.10 \) and \( \alpha=0.01 \) levels of significance and the critical value method with the table. Part: \( 0 / 5 \) Part 1 of 5 State the appropriate null and alternate hypotheses. \( H_{0}: p=0.12 \) \( H_{1}: p>0.12 \) This hypothesis test is a right-tailed. Part: \( 1 / 5 \) test. Part 2 of 5 Find the critical values. Round the answer to three decimal places. For \( \alpha=0.10 \), the critical value is \( \square \) For \( \alpha=0.01 \), the critical value is

Ask by Gonzalez Li. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

For α = 0.10, the critical value is 1.282. For α = 0.01, the critical value is 2.326.

Solución

We begin with the null and alternative hypotheses:   H₀: p = 0.12   H₁: p > 0.12 Since the economist claims a greater proportion than 12%, this test is right-tailed. Now, for the critical values: 1. For α = 0.10:   The critical z-value (right-tail) is approximately 1.282 (rounded to three decimals: 1.282). 2. For α = 0.01:   The critical z-value (right-tail) is approximately 2.326 (rounded to three decimals: 2.326). Thus, the critical values are:   For α = 0.10, critical value = 1.282   For α = 0.01, critical value = 2.326

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the critical values for the hypothesis test you indicated, we need to refer to the standard normal distribution (Z-table). For \( \alpha=0.10 \), the critical value is approximately \( 1.282 \). This means that if your calculated test statistic is greater than \( 1.282 \), you would reject the null hypothesis. For \( \alpha=0.01 \), the critical value is approximately \( 2.326 \). Here again, if your calculated test statistic exceeds \( 2.326 \), you will confidently reject the null hypothesis in favor of the alternative, suggesting that more than \( 12\% \) of U.S. adults indeed have a great deal of confidence in banks.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad