Pregunta
upstudy study bank question image url

Question 6. The arch of a bridge over a river is modelled by the formula \( h=-\frac{1}{40}(x-25)^{2}+15.625 \), where \( h \) is the height of the span above the river, and \( d \) is the distance from the left bank of the river. A horizontal beam runs from one side of the arch to the other at a height of 10 m above the river. The length of this beam is closest to

Ask by Pollard Mejia. in Australia
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The length of the beam is closest to 30 meters.

Solución

To find the length of the horizontal beam that runs at a height of 10 m above the river, we need to determine the points where the height of the arch \( h \) equals 10 m. The equation of the arch is given by: \[ h = -\frac{1}{40}(x-25)^{2} + 15.625 \] We will set \( h = 10 \) and solve for \( x \): \[ 10 = -\frac{1}{40}(x-25)^{2} + 15.625 \] Now, let's rearrange the equation to isolate the quadratic term: \[ -\frac{1}{40}(x-25)^{2} = 10 - 15.625 \] Calculating the right side: \[ 10 - 15.625 = -5.625 \] Now, we can rewrite the equation: \[ -\frac{1}{40}(x-25)^{2} = -5.625 \] Multiplying both sides by -40 to eliminate the fraction: \[ (x-25)^{2} = 5.625 \times 40 \] Calculating \( 5.625 \times 40 \): \[ 5.625 \times 40 = 225 \] Now we have: \[ (x-25)^{2} = 225 \] Taking the square root of both sides: \[ x - 25 = \pm 15 \] This gives us two solutions for \( x \): 1. \( x - 25 = 15 \) → \( x = 40 \) 2. \( x - 25 = -15 \) → \( x = 10 \) Now, we have the two points where the beam intersects the arch: \( x = 10 \) and \( x = 40 \). To find the length of the beam, we calculate the distance between these two points: \[ \text{Length of the beam} = 40 - 10 = 30 \] Thus, the length of the beam is closest to: \[ \boxed{30} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the length of the horizontal beam that runs at a height of 10 m above the river, we first set the equation of the arch equal to 10. Thus, we solve \[ -\frac{1}{40}(x-25)^{2}+15.625 = 10. \] Rearranging gives us \( -\frac{1}{40}(x-25)^{2} = -5.625 \). Multiplying by -40 leads to \[ (x-25)^{2} = 225. \] Taking the square root yields \( x - 25 = 15 \) or \( x - 25 = -15 \), leading to the solutions \( x = 40 \) and \( x = 10 \). Therefore, the distance along the beam is \[ 40 - 10 = 30. \] The length of the beam is closest to 30 m. --- The formula of the bridge arch is a classic example of a quadratic function, which often models real-world phenomena like bridges and fountains. Quadratics are characterized by their parabolic shape, making them ideal for structures needing wind resistance and stability. The vertex form of the equation reveals the highest point, or vertex, of the arch, essential for understanding the design's structure and strength. When working with heights in real-world situations, always check if the prescribed height (like the 10 m for the beam) can be reached by substituting back into the function. It's a common mistake to neglect ensuring the height falls within the defined bounds of the function, which can lead to inaccurate conclusions about feasibility in engineering problems.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad