Pregunta

A solid has a cross section perpendicular to the x-axis, which is a square with side length \(y\). If the function \(y = 2x + 1\) represents the upper boundary of the solid from \(x=0\) to \(x=3\), find its volume.

Ask by Reid Christensen. in South Africa
Jan 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The volume of the solid is 57 cubic units.

Solución

To find the volume of the solid with square cross-sections perpendicular to the \( x \)-axis, we'll follow these steps: 1. **Understand the Cross-Section:** - Each cross-section perpendicular to the \( x \)-axis is a square. - The side length of each square is given by \( y = 2x + 1 \). - Therefore, the area \( A(x) \) of each square cross-section is: \[ A(x) = y^2 = (2x + 1)^2 \] 2. **Set Up the Integral for Volume:** - The volume \( V \) of the solid is obtained by integrating the area of the cross-sections from \( x = 0 \) to \( x = 3 \): \[ V = \int_{0}^{3} (2x + 1)^2 \, dx \] 3. **Expand and Integrate:** - First, expand \( (2x + 1)^2 \): \[ (2x + 1)^2 = 4x^2 + 4x + 1 \] - Now, integrate term by term: \[ V = \int_{0}^{3} (4x^2 + 4x + 1) \, dx = \left[ \frac{4}{3}x^3 + 2x^2 + x \right]_{0}^{3} \] 4. **Evaluate the Integral:** - Plug in the upper limit \( x = 3 \): \[ \frac{4}{3}(3)^3 + 2(3)^2 + 3 = \frac{4}{3}(27) + 18 + 3 = 36 + 18 + 3 = 57 \] - The lower limit \( x = 0 \) gives 0. 5. **Final Volume:** \[ V = 57 \text{ cubic units} \] **Answer:** The volume of the solid is 57 cubic units.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the volume of the solid with square cross-sections perpendicular to the x-axis, we start by determining the side length of the square \(y\), which is given by the function \(y = 2x + 1\) for the interval \(x = 0\) to \(x = 3\). The area \(A\) of each square cross-section is given by: \[ A = y^2 = (2x + 1)^2. \] We need to compute the volume \(V\) of the solid by integrating the area of the squares along the x-axis from \(0\) to \(3\): \[ V = \int_{0}^{3} A \, dx = \int_{0}^{3} (2x + 1)^2 \, dx. \] Next, we expand the integrand: \[ (2x + 1)^2 = 4x^2 + 4x + 1. \] Now we can write the integral: \[ V = \int_{0}^{3} (4x^2 + 4x + 1) \, dx. \] We can break this up into separate integrals: \[ V = \int_{0}^{3} 4x^2 \, dx + \int_{0}^{3} 4x \, dx + \int_{0}^{3} 1 \, dx. \] Calculating each integral separately: 1. For \(\int_{0}^{3} 4x^2 \, dx\): \[ \int 4x^2 \, dx = \frac{4}{3}x^3 \bigg|_{0}^{3} = \frac{4}{3}(3^3) - \frac{4}{3}(0^3) = \frac{4}{3}(27) = 36. \] 2. For \(\int_{0}^{3} 4x \, dx\): \[ \int 4x \, dx = 2x^2 \bigg|_{0}^{3} = 2(3^2) - 2(0^2) = 2(9) = 18. \] 3. For \(\int_{0}^{3} 1 \, dx\): \[ \int 1 \, dx = x \bigg|_{0}^{3} = 3 - 0 = 3. \] Now we combine these results: \[ V = 36 + 18 + 3 = 57. \] Thus, the volume of the solid is: \[ \boxed{57}. \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad