Pregunta
upstudy study bank question image url

\begin{tabular}{l} the trektonics store begins each month with 1150 phasers in stock. \\ \hline this stock is depleted each month and reordered. The carrying cost per phasers is \( \$ 36 \) per year \\ \hline and the fixed order cost is \( \$ 560 \). \\ \hline\end{tabular} \begin{tabular}{|l|l|l|l|}\hline Calculate the economic order quantity & & & \\ \hline\end{tabular}

Ask by Long Collins. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The economic order quantity is approximately 655 phasers.

Solución

To solve for the economic order quantity (EOQ), we first note that the EOQ formula is given by   EOQ = √((2 × D × S) / H) where   D = Annual demand,   S = Fixed order cost, and   H = Annual carrying (holding) cost per unit. From the problem we have:   • The store begins each month with 1,150 phasers in stock and sells (depletes) this amount during the month.   • Therefore, the monthly demand is 1,150 phasers.   • The annual demand D is 1,150 phasers/month × 12 months = 13,800 phasers/year.   • The fixed order cost S is given as $560.   • The carrying cost per phaser H is $36 per year. Step 1. Substitute the values into the EOQ formula:   EOQ = √((2 × 13,800 × 560) / 36) Step 2. Calculate the numerator first:   2 × 13,800 = 27,600   27,600 × 560 = 15,456,000 Step 3. Now divide by the carrying cost:   15,456,000 / 36 = 429,333.33 (approximately) Step 4. Finally, take the square root:   EOQ = √429,333.33 ≈ 655 phasers Thus, the economic order quantity is approximately 655 phasers.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate the economic order quantity (EOQ), we can use the EOQ formula: \[ EOQ = \sqrt{\frac{2DS}{H}} \] Where: - \(D\) = Demand rate (units per year) - \(S\) = Ordering cost per order - \(H\) = Holding cost per unit per year Given the information: - We know that the store begins each month with 1150 phasers in stock, so assuming that the monthly demand is equal to the stock, we have: \[ D = 1150 \text{ phasers/month} \times 12 \text{ months/year} = 13800 \text{ phasers/year} \] - The fixed order cost \(S = 560\). - The carrying cost \(H = 36\). Now, substituting the values into the EOQ formula: \[ EOQ = \sqrt{\frac{2 \times 13800 \times 560}{36}} \] Calculating the numerator: \[ 2 \times 13800 \times 560 = 15408000 \] Now, dividing by the holding cost: \[ \frac{15408000}{36} = 427200 \] Now, taking the square root: \[ EOQ = \sqrt{427200} \approx 655.34 \] Thus, rounding to the nearest whole number, the economic order quantity is approximately **655 phasers**.

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad