\begin{tabular}{l} the trektonics store begins each month with 1150 phasers in stock. \\ \hline this stock is depleted each month and reordered. The carrying cost per phasers is \( \$ 36 \) per year \\ \hline and the fixed order cost is \( \$ 560 \). \\ \hline\end{tabular} \begin{tabular}{|l|l|l|l|}\hline Calculate the economic order quantity & & & \\ \hline\end{tabular}
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To calculate the economic order quantity (EOQ), we can use the EOQ formula: \[ EOQ = \sqrt{\frac{2DS}{H}} \] Where: - \(D\) = Demand rate (units per year) - \(S\) = Ordering cost per order - \(H\) = Holding cost per unit per year Given the information: - We know that the store begins each month with 1150 phasers in stock, so assuming that the monthly demand is equal to the stock, we have: \[ D = 1150 \text{ phasers/month} \times 12 \text{ months/year} = 13800 \text{ phasers/year} \] - The fixed order cost \(S = 560\). - The carrying cost \(H = 36\). Now, substituting the values into the EOQ formula: \[ EOQ = \sqrt{\frac{2 \times 13800 \times 560}{36}} \] Calculating the numerator: \[ 2 \times 13800 \times 560 = 15408000 \] Now, dividing by the holding cost: \[ \frac{15408000}{36} = 427200 \] Now, taking the square root: \[ EOQ = \sqrt{427200} \approx 655.34 \] Thus, rounding to the nearest whole number, the economic order quantity is approximately **655 phasers**.
