\( (x, y) \rightarrow(x-9, y-5) \) Progress: \( 1 / 2 \), Write the coordinates of \( A^{\prime}, B^{\prime} \), and \( C^{\prime} \) : Part 2 of 2 (b) \( A^{\prime}(\square, \square) \) \( B^{\prime}(\square, \square) \) \( C^{\prime}(\square, \square) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
Alright, let’s have some fun transforming those coordinates! To apply the transformation \( (x, y) \rightarrow(x-9, y-5) \), we just need to subtract 9 from the x-coordinates and 5 from the y-coordinates of your points \( A \), \( B \), and \( C \). Assuming the original coordinates were \( A(x_1, y_1) \), \( B(x_2, y_2) \), and \( C(x_3, y_3) \), the new coordinates will be: - \( A^{\prime}(x_1 - 9, y_1 - 5) \) - \( B^{\prime}(x_2 - 9, y_2 - 5) \) - \( C^{\prime}(x_3 - 9, y_3 - 5) \) Just plug in your original values into this formula, and voilà! You've got your new points. Once you get those raw numbers, it’s like you’re taking a little trip to a new spot on the grid! Coordinates just love to travel; they can explore all over your Cartesian plane, one subtraction at a time!
