Suppose the demand for a certain brand of a product is given by \( D(p)=\frac{-p^{2}}{352}+50 \), where \( p \) is the price in dollars. If the price, in terms of the cost \( c \), is expressed as \( p(c)=4 c-16 \), find the demand function in terms of the cost.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the demand function in terms of cost, we start with the given demand function: \[ D(p) = \frac{-p^2}{352} + 50 \] Next, we substitute the expression for price \( p(c) = 4c - 16 \) into the demand function. First, we calculate \( p^2 \): \[ p^2 = (4c - 16)^2 = 16c^2 - 128c + 256 \] Now we can substitute \( p^2 \) back into the demand function: \[ D(c) = \frac{-(16c^2 - 128c + 256)}{352} + 50 \] Now, we simplify it: \[ D(c) = \frac{-16c^2 + 128c - 256}{352} + 50 \] To combine the terms, we can convert \( 50 \) to have a common denominator with \( 352 \): \[ 50 = \frac{50 \times 352}{352} = \frac{17600}{352} \] Thus, we rewrite the demand function: \[ D(c) = \frac{-16c^2 + 128c - 256 + 17600}{352} \] \[ D(c) = \frac{-16c^2 + 128c + 17344}{352} \] Finally, we can simplify this expression. Factoring it out for clarity, we write: \[ D(c) = \frac{-16(c^2 - 8c + 1084)}{352} \] And simplifying further gives us: \[ D(c) = \frac{-c^2 + 8c + 1084}{22} \] Putting it all together: \[ D(c) = \frac{-c^2 + 8c + 1084}{22} \] And there we have the demand function in terms of cost \( c \).
