Pregunta
upstudy study bank question image url

Lesson Summary A system of linear equations can have a unique solution, no solution, or infinitely many solutions. Systems with a unique solution are comprised of two linear equations whose graphs have different_ that is, their graphs in a coordinate plane will be two distinct lines that intersect at only one point. Systems with no solutions are comprised of two linear equations whose graphs have the same points; that is, their graphs in a coordinate plane will be two parallel lines (with no intersection). Systems with infinitely many solutions are comprised of two linear equations whos raphs have the same and the same raphs in a coordinate plane are the same line (i.e., every solution to one equation v a solution to the other equation).

Ask by Hodges George. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

A system of linear equations can have a unique solution, no solution, or infinitely many solutions. - **Unique Solution**: The equations have different slopes, so their graphs are two distinct intersecting lines that meet at one point. - **No Solution**: The equations have the same slope but different y-intercepts, making their graphs parallel lines that never intersect. - **Infinitely Many Solutions**: The equations have the same slope and the same y-intercept, so their graphs are the same line, meaning every point on one line is also on the other. This summary covers the possible outcomes for systems of two linear equations based on their slopes and y-intercepts.

Solución

Here’s a brief overview to complete and clarify the summary: 1. Unique Solution:  • If a system of two linear equations has a unique solution, then the equations have different slopes.  • Graphically, this means the lines are neither parallel nor the same—they intersect at exactly one point. 2. No Solution:  • If the system has no solution, the two equations have the same slope but different y-intercepts.  • Graphically, the lines are parallel, so they never intersect. 3. Infinitely Many Solutions:  • If the system has infinitely many solutions, then the two equations have both the same slope and the same y-intercept.  • Graphically, the lines are exactly the same (coincident), meaning every point on one line is also a point on the other. This completes the lesson summary for systems of linear equations.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that the study of systems of linear equations dates back to ancient civilizations? The Babylonians were among the first to solve simple linear equations as far back as 2000 BC! They used geometric methods and numerical solutions, laying the groundwork for modern algebra. Fast forward to the Renaissance, when mathematicians like René Descartes helped formalize these concepts, making it easier for us to visualize and solve systems of equations today. In real-world scenarios, the application of systems of linear equations is abundant! For example, in business, companies often need to solve problems involving supply and demand. Imagine a bakery planning to maximize profit by determining how many cupcakes and cookies to bake, taking into account limited resources like flour and sugar—solving a system of equations can help them find that perfect balance!

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad