Pregunta
upstudy study bank question image url

1. In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that (i) The student opted for NCC or NSS. (ii) The student has opted neither NCC nor NSS. (iii) The student has opted NSS but not NCC.

Ask by Ruiz Cummings. in India
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- The probability that a student opted for NCC or NSS is 19/30. - The probability that a student opted neither NCC nor NSS is 11/30. - The probability that a student opted NSS but not NCC is 2/15.

Solución

Total number of students = 60 Number opting for NCC = 30 Number opting for NSS = 32 Number opting for both NCC and NSS = 24 We can use the principle of inclusion and exclusion. 1. Number of students who opted for NCC or NSS = (Number in NCC) + (Number in NSS) - (Number in both)   = 30 + 32 - 24 = 38 2. (i) Probability that a student opted for NCC or NSS = Number opting for NCC or NSS / Total students   = 38/60   = 19/30 3. Number of students who opted for neither = Total students - (Number opting for NCC or NSS)   = 60 - 38 = 22   (ii) Probability for neither = 22/60   = 11/30 4. Number of students who opted for NSS but not NCC = (Number opting for NSS) - (Number opting for both)   = 32 - 24 = 8   (iii) Probability for NSS but not NCC = 8/60   = 2/15 Thus, the answers are: (i) 19/30 (ii) 11/30 (iii) 2/15

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the problem, we'll use the principle of inclusion-exclusion and basic probability concepts. Let: - \( n(A) \) = Number of students who opted for NCC = 30 - \( n(B) \) = Number of students who opted for NSS = 32 - \( n(A \cap B) \) = Number of students who opted for both NCC and NSS = 24 (i) To find the number of students who opted for either NCC or NSS, we use: \[ n(A \cup B) = n(A) + n(B) - n(A \cap B) \] Substituting the values: \[ n(A \cup B) = 30 + 32 - 24 = 38 \] The probability that a student opted for either NCC or NSS is: \[ P(A \cup B) = \frac{n(A \cup B)}{60} = \frac{38}{60} = \frac{19}{30} \] (ii) The number of students who opted for neither NCC nor NSS can be found by subtracting those who opted for either NCC or NSS from the total number of students: \[ n(\text{neither}) = 60 - n(A \cup B) = 60 - 38 = 22 \] The probability that a student has opted for neither NCC nor NSS is: \[ P(\text{neither}) = \frac{22}{60} = \frac{11}{30} \] (iii) The number of students who opted for NSS but not NCC can be calculated as: \[ n(B \text{ only}) = n(B) - n(A \cap B) = 32 - 24 = 8 \] The probability that a student has opted for NSS but not NCC is: \[ P(B \text{ only}) = \frac{n(B \text{ only})}{60} = \frac{8}{60} = \frac{2}{15} \] So the final answers are: (i) \( \frac{19}{30} \) (ii) \( \frac{11}{30} \) (iii) \( \frac{2}{15} \)

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad