Pregunta
upstudy study bank question image url

A box contains three blue bulbs, fourg goth bulbs and five red bulbs. Four hult ity taken out of the box at random and willones replacements. What is the probability by (i) all the four bulbs are of the same colour; (ii) the first two are of the same colos and the last two are of differem colours.

Ask by Murray Clarke. in Nigeria
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability that all four bulbs are of the same color is approximately 0.0464 or 4.64%. The probability that the first two bulbs are of the same color and the last two are of different colors is approximately 0.1251 or 12.51%.

Solución

To solve this problem, we first need to extract the known conditions: - The box contains: - 3 blue bulbs - 4 green bulbs - 5 red bulbs - Total bulbs = \(3 + 4 + 5 = 12\) - We are drawing 4 bulbs with replacement. Now, let's solve the two parts of the problem step by step. ### Part (i): Probability that all four bulbs are of the same color To find the probability that all four bulbs drawn are of the same color, we need to consider the three colors separately. 1. **Probability of drawing 4 blue bulbs:** \[ P(\text{4 blue}) = \left(\frac{3}{12}\right)^4 \] 2. **Probability of drawing 4 green bulbs:** \[ P(\text{4 green}) = \left(\frac{4}{12}\right)^4 \] 3. **Probability of drawing 4 red bulbs:** \[ P(\text{4 red}) = \left(\frac{5}{12}\right)^4 \] Now, we can sum these probabilities to find the total probability of drawing 4 bulbs of the same color: \[ P(\text{all same color}) = P(\text{4 blue}) + P(\text{4 green}) + P(\text{4 red}) \] Let's calculate this step by step. ### Part (ii): Probability that the first two are of the same color and the last two are of different colors To find this probability, we can break it down into cases based on the color of the first two bulbs. 1. **Case 1: First two are blue** - Probability of first two being blue: \(\left(\frac{3}{12}\right)^2\) - Probability of the third bulb being either green or red: \(\frac{4 + 5}{12} = \frac{9}{12}\) - Probability of the fourth bulb being the other color (not blue): \(\frac{4 + 5 - 1}{12} = \frac{8}{12}\) So, the probability for this case is: \[ P(\text{first two blue}) = \left(\frac{3}{12}\right)^2 \cdot \frac{9}{12} \cdot \frac{8}{12} \] 2. **Case 2: First two are green** - Probability of first two being green: \(\left(\frac{4}{12}\right)^2\) - Probability of the third bulb being either blue or red: \(\frac{3 + 5}{12} = \frac{8}{12}\) - Probability of the fourth bulb being the other color (not green): \(\frac{3 + 5 - 1}{12} = \frac{7}{12}\) So, the probability for this case is: \[ P(\text{first two green}) = \left(\frac{4}{12}\right)^2 \cdot \frac{8}{12} \cdot \frac{7}{12} \] 3. **Case 3: First two are red** - Probability of first two being red: \(\left(\frac{5}{12}\right)^2\) - Probability of the third bulb being either blue or green: \(\frac{3 + 4}{12} = \frac{7}{12}\) - Probability of the fourth bulb being the other color (not red): \(\frac{3 + 4 - 1}{12} = \frac{6}{12}\) So, the probability for this case is: \[ P(\text{first two red}) = \left(\frac{5}{12}\right)^2 \cdot \frac{7}{12} \cdot \frac{6}{12} \] Now, we can sum these probabilities to find the total probability for part (ii): \[ P(\text{first two same, last two different}) = P(\text{first two blue}) + P(\text{first two green}) + P(\text{first two red}) \] Let's calculate these probabilities. ### Calculations Now, I will perform the calculations for both parts. #### Part (i) Calculation 1. \(P(\text{4 blue}) = \left(\frac{3}{12}\right)^4\) 2. \(P(\text{4 green}) = \left(\frac{4}{12}\right)^4\) 3. \(P(\text{4 red}) = \left(\frac{5}{12}\right)^4\) #### Part (ii) Calculation 1. \(P(\text{first two blue}) = \left(\frac{3}{12}\right)^2 \cdot \frac{9}{12} \cdot \frac{8}{12}\) 2. \(P(\text{first two green}) = \left(\frac{4}{12}\right)^2 \cdot \frac{8}{12} \cdot \frac{7}{12}\) 3. \(P(\text{first two red}) = \left(\frac{5}{12}\right)^2 \cdot \frac{7}{12} \cdot \frac{6}{12}\) Let's perform these calculations. Calculate the value by following steps: - step0: Calculate: \(\left(\frac{3}{12}\right)^{4}+\left(\frac{4}{12}\right)^{4}+\left(\frac{5}{12}\right)^{4}\) - step1: Reduce the fraction: \(\left(\frac{1}{4}\right)^{4}+\left(\frac{4}{12}\right)^{4}+\left(\frac{5}{12}\right)^{4}\) - step2: Reduce the fraction: \(\left(\frac{1}{4}\right)^{4}+\left(\frac{1}{3}\right)^{4}+\left(\frac{5}{12}\right)^{4}\) - step3: Evaluate the power: \(\frac{1}{256}+\left(\frac{1}{3}\right)^{4}+\left(\frac{5}{12}\right)^{4}\) - step4: Evaluate the power: \(\frac{1}{256}+\frac{1}{81}+\left(\frac{5}{12}\right)^{4}\) - step5: Evaluate the power: \(\frac{1}{256}+\frac{1}{81}+\frac{625}{20736}\) - step6: Reduce fractions to a common denominator: \(\frac{81}{256\times 81}+\frac{256}{81\times 256}+\frac{625}{20736}\) - step7: Multiply the numbers: \(\frac{81}{20736}+\frac{256}{81\times 256}+\frac{625}{20736}\) - step8: Multiply the numbers: \(\frac{81}{20736}+\frac{256}{20736}+\frac{625}{20736}\) - step9: Transform the expression: \(\frac{81+256+625}{20736}\) - step10: Add the numbers: \(\frac{962}{20736}\) - step11: Reduce the fraction: \(\frac{481}{10368}\) Calculate or simplify the expression \( (3/12)^2 * (9/12) * (8/12) + (4/12)^2 * (8/12) * (7/12) + (5/12)^2 * (7/12) * (6/12) \). Calculate the value by following steps: - step0: Calculate: \(\left(\frac{3}{12}\right)^{2}\left(\frac{9}{12}\right)\left(\frac{8}{12}\right)+\left(\frac{4}{12}\right)^{2}\left(\frac{8}{12}\right)\times \frac{7}{12}+\left(\frac{5}{12}\right)^{2}\times \frac{7}{12}\left(\frac{6}{12}\right)\) - step1: Reduce the fraction: \(\left(\frac{1}{4}\right)^{2}\left(\frac{9}{12}\right)\left(\frac{8}{12}\right)+\left(\frac{4}{12}\right)^{2}\left(\frac{8}{12}\right)\times \frac{7}{12}+\left(\frac{5}{12}\right)^{2}\times \frac{7}{12}\left(\frac{6}{12}\right)\) - step2: Reduce the fraction: \(\left(\frac{1}{4}\right)^{2}\left(\frac{9}{12}\right)\left(\frac{8}{12}\right)+\left(\frac{1}{3}\right)^{2}\left(\frac{8}{12}\right)\times \frac{7}{12}+\left(\frac{5}{12}\right)^{2}\times \frac{7}{12}\left(\frac{6}{12}\right)\) - step3: Reduce the fraction: \(\left(\frac{1}{4}\right)^{2}\times \frac{3}{4}\left(\frac{8}{12}\right)+\left(\frac{1}{3}\right)^{2}\left(\frac{8}{12}\right)\times \frac{7}{12}+\left(\frac{5}{12}\right)^{2}\times \frac{7}{12}\left(\frac{6}{12}\right)\) - step4: Reduce the fraction: \(\left(\frac{1}{4}\right)^{2}\times \frac{3}{4}\times \frac{2}{3}+\left(\frac{1}{3}\right)^{2}\left(\frac{8}{12}\right)\times \frac{7}{12}+\left(\frac{5}{12}\right)^{2}\times \frac{7}{12}\left(\frac{6}{12}\right)\) - step5: Reduce the fraction: \(\left(\frac{1}{4}\right)^{2}\times \frac{3}{4}\times \frac{2}{3}+\left(\frac{1}{3}\right)^{2}\times \frac{2}{3}\times \frac{7}{12}+\left(\frac{5}{12}\right)^{2}\times \frac{7}{12}\left(\frac{6}{12}\right)\) - step6: Reduce the fraction: \(\left(\frac{1}{4}\right)^{2}\times \frac{3}{4}\times \frac{2}{3}+\left(\frac{1}{3}\right)^{2}\times \frac{2}{3}\times \frac{7}{12}+\left(\frac{5}{12}\right)^{2}\times \frac{7}{12}\times \frac{1}{2}\) - step7: Multiply: \(\frac{1}{32}+\left(\frac{1}{3}\right)^{2}\times \frac{2}{3}\times \frac{7}{12}+\left(\frac{5}{12}\right)^{2}\times \frac{7}{12}\times \frac{1}{2}\) - step8: Multiply: \(\frac{1}{32}+\frac{7}{162}+\left(\frac{5}{12}\right)^{2}\times \frac{7}{12}\times \frac{1}{2}\) - step9: Multiply: \(\frac{1}{32}+\frac{7}{162}+\frac{175}{3456}\) - step10: Reduce fractions to a common denominator: \(\frac{81\times 4}{32\times 81\times 4}+\frac{7\times 16\times 4}{162\times 16\times 4}+\frac{175\times 3}{3456\times 3}\) - step11: Multiply the terms: \(\frac{81\times 4}{10368}+\frac{7\times 16\times 4}{162\times 16\times 4}+\frac{175\times 3}{3456\times 3}\) - step12: Multiply the terms: \(\frac{81\times 4}{10368}+\frac{7\times 16\times 4}{10368}+\frac{175\times 3}{3456\times 3}\) - step13: Multiply the numbers: \(\frac{81\times 4}{10368}+\frac{7\times 16\times 4}{10368}+\frac{175\times 3}{10368}\) - step14: Transform the expression: \(\frac{81\times 4+7\times 16\times 4+175\times 3}{10368}\) - step15: Multiply the numbers: \(\frac{324+7\times 16\times 4+175\times 3}{10368}\) - step16: Multiply the terms: \(\frac{324+448+175\times 3}{10368}\) - step17: Multiply the numbers: \(\frac{324+448+525}{10368}\) - step18: Add the numbers: \(\frac{1297}{10368}\) ### Results 1. **Part (i): Probability that all four bulbs are of the same color** - The probability is approximately \(0.046393\) or in fractional form, \(\frac{481}{10368}\). 2. **Part (ii): Probability that the first two are of the same color and the last two are of different colors** - The probability is approximately \(0.125096\) or in fractional form, \(\frac{1297}{10368}\). ### Summary - **Probability of all four bulbs being the same color:** \(\approx 0.046393\) or \(\frac{481}{10368}\) - **Probability of the first two being the same color and the last two being different colors:** \(\approx 0.125096\) or \(\frac{1297}{10368}\)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To tackle this probability problem with a colorful box filled with bulbs, let's take a deeper dive into how we can calculate the odds! The total number of bulbs is 3 blue + 4 green + 5 red = 12 bulbs. (i) To find the probability that all four bulbs drawn are of the same color, first, we determine the chances for each color: - For blue: The probability of drawing 4 blue bulbs is \( \left( \frac{3}{12} \right) \times \left( \frac{3}{12} \right) \times \left( \frac{3}{12} \right) \times \left( \frac{3}{12} \right) \), which is 0 because you can't draw 4 blue from just 3 available. - For green: Similarly, \( \left( \frac{4}{12} \right)^4 = \frac{256}{20736} \). - For red: Here too, \( \left( \frac{5}{12} \right)^4 = \frac{625}{20736} \). So, the total probability is \( 0 + \frac{256}{20736} + \frac{625}{20736} = \frac{881}{20736} \). (ii) For the first two bulbs being the same color and the last two being different colors, we can separately calculate based on the possible same colors: - First two blue + different green/red: \( \left( \frac{3}{12} \right) \times \left( \frac{3}{12} \right) \times 2 \left( \frac{4}{12} \right) \times \left( \frac{5}{12} \right) \). - First two green + different blue/red: \( \left( \frac{4}{12} \right) \times \left( \frac{4}{12} \right) \times 2 \left( \frac{3}{12} \right) \times \left( \frac{5}{12} \right) \). - First two red + different blue/green: \( \left( \frac{5}{12} \right) \times \left( \frac{5}{12} \right) \times 2 \left( \frac{3}{12} \right) \times \left( \frac{4}{12} \right) \). After carrying out the calculations, sum up the different probabilities to get your answer! With a little creativity and clever calculation, you'll know all about these colorful little bulbs and their probabilities!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad