Pregunta
upstudy study bank question image url

The nurse claim that a 4 -litre drip with a Drip Factor of \( 20 \mathrm{gtt} / \mathrm{ml} \) and a drip rate of \( 300 \mathrm{gtt} / \mathrm{min} \) will take mrore than 266 minutes to finish. The doctor claim that the drip will take less than 266 minutes to Use calculations to verify who is correct.

Ask by Hart Mcguire. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The drip will take approximately 266.67 minutes, which is slightly more than 266 minutes. Therefore, the nurse is correct, and the doctor is incorrect.

Solución

Step 1: Convert the volume to milliliters.   Since 1 L = 1000 ml, a 4 L drip equals 4 × 1000 = 4000 ml. Step 2: Calculate the total number of drops.   Total drops = volume (in ml) × drip factor = 4000 ml × 20 gtt/ml = 80,000 drops. Step 3: Calculate the total time in minutes.   Time (in minutes) = total drops ÷ drip rate = 80,000 gtt ÷ 300 gtt/min = 80000/300 ≈ 266.67 minutes. Conclusion:   The infusion will take approximately 266.67 minutes (~266 minutes and 40 seconds), which is slightly more than 266 minutes. Therefore, the nurse’s claim that it will take more than 266 minutes is correct, and the doctor’s claim is incorrect.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine who is correct, we need to calculate the total time required for a 4-litre drip to be administered at a drip rate of \(300 \mathrm{gtt/min}\). 1. First, we need to convert \(4\, \text{litres}\) to millilitres, since the drip factor is given in gtt/ml: \[ 4 \, \text{litres} = 4000 \, \text{ml} \] 2. Next, we can calculate the total number of drops required using the drip factor: \[ \text{Total drops} = \text{Total volume (ml)} \times \text{Drip Factor (gtt/ml)} \] \[ \text{Total drops} = 4000 \, \text{ml} \times 20 \, \text{gtt/ml} = 80000 \, \text{gtt} \] 3. Now, we find out how long it will take to administer the total volume at \(300 \text{gtt/min}\): \[ \text{Total time (min)} = \frac{\text{Total drops}}{\text{Drip rate (gtt/min)}} \] \[ \text{Total time (min)} = \frac{80000 \, \text{gtt}}{300 \, \text{gtt/min}} \approx 266.67 \, \text{minutes} \] So, the calculated time is approximately \(266.67\) minutes, which means the nurse is correct in saying it will take more than \(266\) minutes, while the doctor is incorrect.

preguntas relacionadas

Latest Medicine Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad