Responder
(a) The derivative of \( f(x) = a x^{2} - b x + c \) is \( f^{\prime}(x) = 2 a x - b \).
(b) The derivative of \( f(x) = a x^{3} \) is \( f^{\prime}(x) = 3 a x^{2} \).
(c) The derivative of \( f(x) = \sqrt{a x} \) is \( f^{\prime}(x) = \frac{a}{2 \sqrt{a x}} \).
(d) The derivative of \( f(x) = \frac{a}{b x} \) is \( f^{\prime}(x) = -\frac{a}{b x^{2}} \).
(e) The solutions from parts (a)-(d) are verified using the Power Rule, Constant Multiple Rule, and Chain Rule.
Solución
We are going to use the definition
f′(x) = limₕ→0 [f(x + h) − f(x)]/h
to differentiate each function. Finally, we’ll verify our answers using the standard derivative rules.
─────────────────────────────
(a) f(x) = ax² – bx + c
Step 1. Write f(x + h):
f(x + h) = a(x + h)² – b(x + h) + c
Step 2. Expand:
a(x + h)² = a(x² + 2xh + h²) = ax² + 2axh + ah²
– b(x + h) = –bx – bh
Thus, f(x + h) = ax² + 2axh + ah² – bx – bh + c
Step 3. Compute the difference:
f(x + h) – f(x) = [ax² + 2axh + ah² – bx – bh + c] – [ax² – bx + c]
= 2axh + ah² – bh
Step 4. Form the difference quotient:
[f(x + h) − f(x)]/h = (2axh + ah² – bh)/h
= 2ax + ah – b (for h ≠ 0)
Step 5. Take the limit as h → 0:
f′(x) = limₕ→0 [2ax + ah – b] = 2ax – b
─────────────────────────────
(b) f(x) = ax³
Step 1. Write f(x + h):
f(x + h) = a(x + h)³
Step 2. Expand (x + h)³:
(x + h)³ = x³ + 3x²h + 3xh² + h³
Thus, f(x + h) = a(x³ + 3x²h + 3xh² + h³) = ax³ + 3ax²h + 3axh² + ah³
Step 3. Difference:
f(x + h) – f(x) = [ax³ + 3ax²h + 3axh² + ah³] – ax³ = 3ax²h + 3axh² + ah³
Step 4. Difference quotient:
[f(x + h) − f(x)]/h = (3ax²h + 3axh² + ah³)/h
= 3ax² + 3axh + ah²
Step 5. Let h → 0:
f′(x) = limₕ→0 [3ax² + 3axh + ah²] = 3ax²
─────────────────────────────
(c) f(x) = √(ax) or (ax)^(1/2)
Step 1. Write f(x + h):
f(x + h) = √(a(x + h)) = √(ax + ah)
Step 2. Form the difference quotient:
[f(x + h) − f(x)]/h = [√(ax + ah) − √(ax)] / h
Step 3. Multiply by the conjugate over itself to simplify:
= { [√(ax + ah) − √(ax)] · [√(ax + ah) + √(ax)] } / { h [√(ax + ah) + √(ax)] }
The numerator becomes:
(ax + ah) – ax = ah
Thus, the expression simplifies to:
= [ah] / [h (√(ax + ah) + √(ax))]
Cancel h (assuming h ≠ 0):
= a / [√(ax + ah) + √(ax)]
Step 4. Take the limit as h → 0:
As h → 0, √(ax + ah) → √(ax).
Thus, limit becomes:
f′(x) = a / [2√(ax)] or f′(x) = a/(2√(ax))
─────────────────────────────
(d) f(x) = a/(bx) which can also be written as (a/b)(1/x)
Step 1. Write f(x + h):
f(x + h) = a/(b(x + h))
Step 2. Form the difference quotient:
[f(x + h) − f(x)]/h = [a/(b(x + h)) − a/(bx)] / h
Step 3. Combine the two fractions:
Find a common denominator for the terms in brackets:
Common denominator = b x(x + h)
Thus, a/(b(x + h)) − a/(bx) = [a x – a(x + h)] / [b x(x + h)]
= [a x – a x – a h] / [b x(x + h)] = (–a h) / [b x(x + h)]
Step 4. Divide by h:
[f(x + h) − f(x)]/h = (–a h) / [b x(x + h) · h] = –a / [b x(x + h)]
Step 5. Take the limit as h → 0:
As h → 0, (x + h) → x, so
f′(x) = –a / [b x²]
─────────────────────────────
(e) Verification Using Derivative Rules
Let’s quickly check each result with known rules:
1. For (a) f(x) = ax² – bx + c, using the power rule and constant multiple rule:
d/dx(ax²) = 2ax, d/dx(–bx) = –b, d/dx(c) = 0
Thus, f′(x) = 2ax – b.
2. For (b) f(x) = ax³:
d/dx(ax³) = a · 3x² = 3ax².
3. For (c) f(x) = (ax)^(1/2):
Using the chain rule: d/dx [ (ax)^(1/2) ] = (1/2)(ax)^(–1/2) · a = a/(2√(ax)).
4. For (d) f(x) = a/(bx) = (a/b)x^(–1):
d/dx[(a/b)x^(–1)] = (a/b)(–1)x^(–2) = –a/(b x²).
─────────────────────────────
Summary of Answers:
(a) f′(x) = 2ax – b
(b) f′(x) = 3ax²
(c) f′(x) = a/(2√(ax))
(d) f′(x) = –a/(b x²)
All our results match the verification using the derivative rules.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución