Pregunta
upstudy study bank question image url

Find the cost of each item in 10 years, assuming an inflation rate of \( 9 \% \) (compounded continuously). (Round your answers to the nearest cent.) (a) movie admission, \( \$ 7.00 \) \( \$ \) (b) CD, \( \$ 13.95 \) \( \$ \) (c) textbook, \( \$ 140.00 \) \( \$ \) (d) electric bill, \( \$ 125 \) \( \$ \)

Ask by Perkins Bartlett. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

In 10 years, the costs will be: - Movie admission: \$17.22 - CD: \$34.31 - Textbook: \$344.34 - Electric bill: \$307.45

Solución

To find the cost of each item in 10 years, assuming an inflation rate of \( 9\% \) compounded continuously, we can use the formula for continuous compounding: \[ A = P \times e^{rt} \] where: - \( A \) is the amount after \( t \) years, - \( P \) is the principal amount (initial cost), - \( r \) is the annual inflation rate (in decimal form), - \( t \) is the time in years. Given: - Inflation rate \( r = 9\% = 0.09 \) (in decimal form), - Time \( t = 10 \) years. Let's calculate the cost of each item in 10 years: (a) Movie admission: \[ A = 7 \times e^{0.09 \times 10} \] (b) CD: \[ A = 13.95 \times e^{0.09 \times 10} \] (c) Textbook: \[ A = 140 \times e^{0.09 \times 10} \] (d) Electric bill: \[ A = 125 \times e^{0.09 \times 10} \] Now, let's calculate the cost of each item in 10 years using the formula. Calculate the value by following steps: - step0: Calculate: \(7e^{0.09\times 10}\) - step1: Multiply the numbers: \(7e^{0.9}\) - step2: Convert the expressions: \(7e^{\frac{9}{10}}\) - step3: Rewrite the expression: \(7\sqrt[10]{e^{9}}\) The cost of movie admission in 10 years is approximately $17.22. Now, let's calculate the cost of the CD in 10 years. Calculate the value by following steps: - step0: Calculate: \(13.95e^{0.09\times 10}\) - step1: Multiply the numbers: \(13.95e^{0.9}\) - step2: Convert the expressions: \(13.95e^{\frac{9}{10}}\) - step3: Convert the expressions: \(\frac{279}{20}e^{\frac{9}{10}}\) - step4: Multiply the numbers: \(\frac{279e^{\frac{9}{10}}}{20}\) - step5: Simplify: \(\frac{279\sqrt[10]{e^{9}}}{20}\) The cost of the CD in 10 years is approximately $34.31. Next, let's calculate the cost of the textbook in 10 years. Calculate the value by following steps: - step0: Calculate: \(140e^{0.09\times 10}\) - step1: Multiply the numbers: \(140e^{0.9}\) - step2: Convert the expressions: \(140e^{\frac{9}{10}}\) - step3: Rewrite the expression: \(140\sqrt[10]{e^{9}}\) The cost of the textbook in 10 years is approximately $344.34. Finally, let's calculate the cost of the electric bill in 10 years. Calculate the value by following steps: - step0: Calculate: \(125e^{0.09\times 10}\) - step1: Multiply the numbers: \(125e^{0.9}\) - step2: Convert the expressions: \(125e^{\frac{9}{10}}\) - step3: Rewrite the expression: \(125\sqrt[10]{e^{9}}\) The cost of the electric bill in 10 years is approximately $307.45. Therefore, the cost of each item in 10 years, assuming an inflation rate of \( 9\% \) compounded continuously, is: - Movie admission: $17.22 - CD: $34.31 - Textbook: $344.34 - Electric bill: $307.45

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the future cost of each item considering a continuous inflation rate of \( 9\% \), you can use the formula for continuous compounding: \[ A = Pe^{rt} \] where \( A \) is the amount of money accumulated after time \( t \), \( P \) is the principal amount (the initial cost), \( r \) is the rate of inflation, and \( t \) is the time in years. Let's calculate each item: (a) For the movie admission: \[ A = 7.00 \times e^{0.09 \times 10} \approx 7.00 \times e^{0.9} \approx 7.00 \times 2.4596 \approx 17.23 \] So, the cost of movie admission in 10 years will be approximately \( \$ 17.23 \). (b) For the CD: \[ A = 13.95 \times e^{0.09 \times 10} \approx 13.95 \times e^{0.9} \approx 13.95 \times 2.4596 \approx 34.31 \] Thus, the cost of the CD in 10 years will be approximately \( \$ 34.31 \). (c) For the textbook: \[ A = 140.00 \times e^{0.09 \times 10} \approx 140.00 \times e^{0.9} \approx 140.00 \times 2.4596 \approx 344.34 \] Therefore, the cost of the textbook in 10 years will be approximately \( \$ 344.34 \). (d) For the electric bill: \[ A = 125.00 \times e^{0.09 \times 10} \approx 125.00 \times e^{0.9} \approx 125.00 \times 2.4596 \approx 307.45 \] So, the cost of the electric bill in 10 years will be approximately \( \$ 307.45 \). Final rounded costs are: (a) \( 17.23 \) (b) \( 34.31 \) (c) \( 344.34 \) (d) \( 307.45 \)

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad