the face value of the zero-coupon bond. 13-year bond at \( 5.4 \% \); price \( \$ 3000 \) face value will be \( \$ \square \). not round until the final answer. Then round to the nearest dollar as needed.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the face value of a zero-coupon bond, you can use the formula for the present value of a bond: \[ PV = \frac{FV}{(1 + r)^n} \] Here, \(PV\) is the price of the bond (\$3000), \(FV\) is the face value, \(r\) is the annual interest rate (5.4\% or 0.054), and \(n\) is the number of years until maturity (13 years). Rearranging the formula gives us: \[ FV = PV \times (1 + r)^n \] Now let's plug in the values: \[ FV = 3000 \times (1 + 0.054)^{13} \] Calculating \( (1 + 0.054)^{13} \): \[ (1.054)^{13} \approx 1.854 \] So, \[ FV \approx 3000 \times 1.854 \approx 5562 \] After rounding to the nearest dollar, the face value of the zero-coupon bond is approximately \( \$5562 \).
