Pregunta
4)) Solve the system of equations. \[ y=x^{2}-6 x+19 \] \( y=-3 x+47 \) 4)) Write the coordinates in exact form. Simplify all fractions and radicals. (
Ask by Campos Rowe. in the United States
Feb 18,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The solutions are \( (-4,59) \) and \( (7,26) \).
Solución
Solve the system of equations \( y=x^{2}-6x+19;y=-3x+47 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y=x^{2}-6x+19\\y=-3x+47\end{array}\right.\)
- step1: Substitute the value of \(y:\)
\(x^{2}-6x+19=-3x+47\)
- step2: Move the expression to the left side:
\(x^{2}-6x+19-\left(-3x+47\right)=0\)
- step3: Calculate:
\(x^{2}-3x-28=0\)
- step4: Factor the expression:
\(\left(x-7\right)\left(x+4\right)=0\)
- step5: Separate into possible cases:
\(\begin{align}&x-7=0\\&x+4=0\end{align}\)
- step6: Solve the equation:
\(\begin{align}&x=7\\&x=-4\end{align}\)
- step7: Calculate:
\(x=7\cup x=-4\)
- step8: Rearrange the terms:
\(\left\{ \begin{array}{l}x=7\\y=x^{2}-6x+19\end{array}\right.\cup \left\{ \begin{array}{l}x=-4\\y=x^{2}-6x+19\end{array}\right.\)
- step9: Calculate:
\(\left\{ \begin{array}{l}x=7\\y=26\end{array}\right.\cup \left\{ \begin{array}{l}x=-4\\y=59\end{array}\right.\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=-4\\y=59\end{array}\right.\cup \left\{ \begin{array}{l}x=7\\y=26\end{array}\right.\)
- step11: Check the solution:
\(\left\{ \begin{array}{l}x=-4\\y=59\end{array}\right.\cup \left\{ \begin{array}{l}x=7\\y=26\end{array}\right.\)
- step12: Rewrite:
\(\left(x,y\right) = \left(-4,59\right)\cup \left(x,y\right) = \left(7,26\right)\)
The solution to the system of equations is \( (x,y) = (-4,59) \) or \( (x,y) = (7,26) \).
Therefore, the coordinates in exact form are \( (-4,59) \) or \( (7,26) \).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
To solve the system of equations, we'll set the two expressions for \( y \) equal to one another: \[ x^{2} - 6x + 19 = -3x + 47 \] Rearranging the equation gives: \[ x^{2} - 3x - 28 = 0 \] Now, factor the quadratic: \[ (x - 7)(x + 4) = 0 \] This gives us the solutions \( x = 7 \) and \( x = -4 \). Next, we'll find the corresponding \( y \)-values. For \( x = 7 \): \[ y = -3(7) + 47 = 26 \] For \( x = -4 \): \[ y = -3(-4) + 47 = 59 \] Thus, the coordinates are: \( (7, 26) \) and \( (-4, 59) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium