Pregunta
upstudy study bank question image url

6. Factor completely: \( x^{2}-x-6 \) ? A. \( (x-2)(x+3) \) B. \( (x-1)(x-6) \) C. \( (x+2)(x-3) \) D. \( (x+1)(x-6) \)

Ask by Christensen Marsh. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The answer is \( (x+2)(x-3) \), choice C.

Solución

Factor the expression \( x^{2}-x-6 \). Factor the expression by following steps: - step0: Factor: \(x^{2}-x-6\) - step1: Rewrite the expression: \(x^{2}+\left(2-3\right)x-6\) - step2: Calculate: \(x^{2}+2x-3x-6\) - step3: Rewrite the expression: \(x\times x+x\times 2-3x-3\times 2\) - step4: Factor the expression: \(x\left(x+2\right)-3\left(x+2\right)\) - step5: Factor the expression: \(\left(x-3\right)\left(x+2\right)\) The factored form of \(x^{2}-x-6\) is \((x-3)(x+2)\). Therefore, the correct answer is C. \( (x+2)(x-3) \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To factor the quadratic expression \( x^{2}-x-6 \), we are looking for two numbers that multiply to -6 (the constant term) and add to -1 (the coefficient of the linear term). Those numbers are -3 and 2. Thus, we can express the quadratic as \( (x-3)(x+2) \). Now, let's look at its historical context. Quadratic equations date back to ancient civilizations, including the Babylonians, who employed geometrical methods to solve them long before the algebraic approach emerged. The quadratic formula we know and love today was developed over centuries, with contributions from various cultures, culminating in the more generalized algebraic manipulations we use now! For real-world applications, consider how factoring quadratic equations can help in optimizing various scenarios. For instance, if you're an architect designing a parabolic arch, being able to factor equations helps quickly determine points of intersections and critical dimensions to ensure stability and aesthetic appeal in your designs!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad