Pregunta
Question Use the box method to distribute and simplify \( (3 x-5)(3 x+1) \). Drag and drop the terms to the correct locations of the table. \[ (3 x-5)(3 x+1) \] \[ \text { Show fomptes } \] Answer Attempt out of 2
Ask by Franklin Pope. in the United States
Feb 25,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
(3x – 5)(3x + 1) = 9x² – 12x – 5
Solución
Step 1: Set up the Box
Draw a 2×2 grid. Label the top columns with the terms from the second factor (3x and +1) and the rows with the terms from the first factor (3x and –5):
3x | +1
-------------------------
3x | (3x)(3x) | (3x)(+1)
-------------------------
–5 | (–5)(3x) | (–5)(+1)
Step 2: Fill in Each Box
• Top left: (3x)(3x) = 9x²
• Top right: (3x)(+1) = 3x
• Bottom left: (–5)(3x) = –15x
• Bottom right: (–5)(+1) = –5
Step 3: Combine Like Terms
Add the middle terms:
3x + (–15x) = –12x
So the expression simplifies to:
9x² – 12x – 5
Final Answer:
(3x – 5)(3x + 1) = 9x² – 12x – 5
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To use the box method for distributing \( (3x - 5)(3x + 1) \), you can create a 2x2 grid (box) where each part of the first binomial is on one side and each part of the second binomial is on the other. Fill in the box with the products of each pair of terms: | | \(3x\) | \(-5\) | |---------|------------|------------| | \(3x\) | \(9x^2\) | \(-15x\) | | \(1\) | \(3x\) | \(-5\) | Now, you simply combine the products. This gives you: \[ 9x^2 - 15x - 5 \] So the final simplified result is: \[ 9x^2 - 15x - 5 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium