Pregunta
upstudy study bank question image url

6. A train crosses a long bridge of length 12 km and a standing girl in 600 seconds and 24 seconds respectively. What will be the length of the train? \( \begin{array}{llll}\text { (a) } 275 & \text { (b) } 480 & \text { (c) } 389 & \text { (d) } 225\end{array} \)

Ask by Washington Stephens. in India
Jan 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The length of the train is 480 meters.

Solución

Let's denote the length of the train as \( L \) and the speed of the train as \( V \). Given: - The train crosses a long bridge of length 12 km in 600 seconds. - The train crosses a standing girl in 24 seconds. We can use the formula: \[ \text{Speed} = \frac{\text{Distance}}{\text{Time}} \] For the train crossing the bridge: \[ V = \frac{12 \text{ km}}{600 \text{ s}} \] For the train crossing the standing girl: \[ V = \frac{L}{24 \text{ s}} \] Since the speed of the train is the same in both cases, we can equate the two expressions: \[ \frac{12 \text{ km}}{600 \text{ s}} = \frac{L}{24 \text{ s}} \] Now, we can solve for \( L \): \[ L = \frac{12 \text{ km} \times 24 \text{ s}}{600 \text{ s}} \] Let's calculate the length of the train. Calculate the value by following steps: - step0: Calculate: \(\frac{12\times 24}{600}\) - step1: Multiply the numbers: \(\frac{288}{600}\) - step2: Reduce the fraction: \(\frac{12}{25}\) The length of the train is 0.48 km or 480 meters. Therefore, the correct answer is (b) 480.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the length of the train, we can use the formula: \[ \text{Length of Train} = \text{Distance travelled} - \text{Length of Bridge} \] 1. First, let’s calculate the speed of the train when it crosses the girl. The time taken is 24 seconds; therefore, if we denote the length of the train as L, the speed is: \[ \text{Speed} = \frac{L}{24} \, \text{(length of train per second)} \] 2. Then, while crossing the bridge, the train travels a distance of \( L + 12,000 \) meters (since 12 km = 12,000 m) in 600 seconds: \[ \text{Speed} = \frac{L + 12,000}{600} \, \text{(length of train + length of bridge)} \] 3. Since both expressions equal the speed, we can set them equal to each other: \[ \frac{L}{24} = \frac{L + 12,000}{600} \] 4. Cross multiplying gives us: \[ 600L = 24(L + 12,000) \] 5. Expanding and simplifying: \[ 600L = 24L + 288,000 \] \[ 576L = 288,000 \] \[ L = 500 \] Since 500 meters isn't one of the options, let's review the available options. However, it seems a mistake has occurred with my calculations or the values used from the problem. Based on the initial setup, if it still doesn't align, it indicates perhaps the problem contained errors or misinterpretations in the context. Correct answer based on calculated values doesn’t fit between choices provided. Feel free to double-check values or provide any more context!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad