Pregunta
upstudy study bank question image url

Part 2 of 2
Let R be the region bounded by , and . Use the shell method to find the volume of the solid
generated when R is revolved about the line .
Set up the integral that gives the volume of the solid using the shell method. Select the correct choice below and fill
in the answer boxes to complete your choice.
(Type exact answers.)
A.
B.
The volume of the solid is
(Type an exact answer.)

Ask by Graham Wood. in the United States
Mar 29,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The volume of the solid is .

Solución

To find the volume of the solid generated when the region R is revolved about the line using the shell method, we need to set up the integral that gives the volume of the solid.
The shell method formula for finding the volume of a solid is given by:
where:
  • is the radius of the shell,
  • is the height of the shell,
  • and are the limits of integration.
In this case, the region R is bounded by , , and . When revolved about the line , the radius of the shell is and the height of the shell is .
Therefore, the integral that gives the volume of the solid using the shell method is:
So, the correct choice is:
B.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the volume of the solid generated by revolving the region around the line , we can use the shell method which requires understanding the shell’s radius and height.
Volume Integral Setup:
The height of the shell is given by the function from to . The radius of the shell is determined by the distance from the line to the shell, which is . Thus the correct integral setup would consider horizontal shells, leading us to choose option B:
The complete setup for the integral is:
Final Volume Calculation:
To find the exact volume, you would evaluate the integral:
To combine these fractions:
So, the volume of the solid is .

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad