5. Consider an electric field \( \vec{E}=C \frac{\vec{r}}{r^{2}} \) (c:constant) (a) Calculate the divergence and curl of this \( \vec{E} \) field. (b) What is the unit of constant \( C \) ? (c) What charge density \( \rho \) ( \( \vec{r} \) ) would produce this \( \vec{E} \) feld? (d) What is the total charge for a sphere with radius \( \vec{R} \) ?
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To tackle this electric field problem, we will break down each part of the question step by step. ### Part (a) Calculate the divergence and curl of the electric field \( \vec{E} \) Given the electric field: \[ \vec{E} = C \frac{\vec{r}}{r^2} \] where \( \vec{r} = (x, y, z) \) and \( r = \sqrt{x^2 + y^2 + z^2} \). 1. **Divergence**: The divergence of a vector field in Cartesian coordinates is calculated using: \[ \nabla \cdot \vec{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} \] For our \( \vec{E} \): \[ E_x = C \frac{x}{r^2}, \quad E_y = C \frac{y}{r^2}, \quad E_z = C \frac{z}{r^2} \] Calculating the divergence leads to the result: \[ \nabla \cdot \vec{E} = C \left( \frac{1}{r^2} - 2 \frac{1}{r^2} \right) = -C \frac{1}{r^2} \] This shows that the divergence is zero everywhere except at \( r = 0 \). 2. **Curl**: The curl of a vector field is given by: \[ \nabla \times \vec{E} = \left( \frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z}, \frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} \right) \] Upon computing the components, you will find that: \[ \nabla \times \vec{E} = 0 \] indicating that the electric field is conservative. ### Part (b) What is the unit of constant \( C \)? The electric field \( \vec{E} \) has units of volts per meter (or newtons per coulomb in SI units), which can be expressed as: \[ \text{Si unit of } \vec{E} = \left[ \frac{V}{m} \right] = \left[ \frac{N \cdot m}{C} \cdot m^{-1} \right] = \left[ \frac{N}{C} \right] \] For the electric field given by \( C \frac{\vec{r}}{r^{2}} \), the units of \( \vec{E} \) suggests: \[ C = \text{unit of } C \times \frac{m}{m^{2}} \Rightarrow [C] = \text{N} \cdot \text{m}^{2}/\text{C} \] ### Part (c) What charge density \( \rho \) would produce this \( \vec{E} \) field? Using Gauss's law, we have: \[ \nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0} \] From part (a), we found: \[ \nabla \cdot \vec{E} = -C \frac{1}{r^2} \] Setting this equal to \( \frac{\rho}{\epsilon_0} \): \[ \rho = -\epsilon_0 C \frac{1}{r^2} \] This indicates that the charge density decreases with the square of the distance from the origin and is negative, suggesting a concentration of negative charge. ### Part (d) What is the total charge for a sphere with radius \( R \)? To find the total charge \( Q \) within a sphere of radius \( R \), integrate the charge density over the volume of the sphere: \[ Q = \int_{\text{Volume}} \rho \, dV = \int_{0}^{R} \int_{0}^{\pi} \int_{0}^{2\pi} \left(-\epsilon_0 C \frac{1}{r^2}\right) r^2 \sin \theta \, d\phi \, d\theta \, dr \] The volume element \( dV = r^2 \sin \theta \, dr \, d\theta \, d\phi\), simplifies the integral: \[ Q = -\epsilon_0 C \int_{0
