d. \( x+y+2 \) e. \( x-2 y \) 9. The figure shows a line broken into 3 adjacent angles. If \( 2 y=120 \), what is the value of \( x \) ?
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find the value of \( x \), we first solve for \( y \) using the equation \( 2y = 120 \). Dividing both sides by 2 gives us \( y = 60 \). Next, we can substitute \( y \) into the expressions given by the broken angles. Assuming the angles add up to form a straight line, which is \( 180^\circ \), we can set up the equation: \( x + y + 2 + x - 2y = 180^\circ \). Simplifying this gives: \( 2x - y + 2 = 180 \). Substituting \( y = 60 \) into that results in: \( 2x - 60 + 2 = 180 \) \( 2x - 58 = 180 \) \( 2x = 238 \) \( x = 119 \). So, the value of \( x \) is \( 119 \).
