Add the radical expressions. \[ 9 \sqrt{20}+2 \sqrt{45}=\square \] \( \sqrt{\square} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To add the radical expressions, we first simplify each term. Starting with \( 9 \sqrt{20} \): \[ \sqrt{20} = \sqrt{4 \cdot 5} = 2 \sqrt{5}, \] so \[ 9 \sqrt{20} = 9 \cdot 2 \sqrt{5} = 18 \sqrt{5}. \] Now simplifying \( 2 \sqrt{45} \): \[ \sqrt{45} = \sqrt{9 \cdot 5} = 3 \sqrt{5}, \] therefore \[ 2 \sqrt{45} = 2 \cdot 3 \sqrt{5} = 6 \sqrt{5}. \] Adding them together: \[ 18 \sqrt{5} + 6 \sqrt{5} = (18 + 6) \sqrt{5} = 24 \sqrt{5}. \] Thus we have \[ 9 \sqrt{20} + 2 \sqrt{45} = 24 \sqrt{5}. \] So in the format given, \( \square = 24 \) and we find that \( \sqrt{\square} = \sqrt{24} = 2 \sqrt{6} \).
