\( A=\left[\begin{array}{cc}1 & -7 \\ 9 & 3\end{array}\right] \quad B=\left[\begin{array}{cc}5 & -1 \\ -7 & 7\end{array}\right] \quad C=\left[\begin{array}{cc}2 & -3 \\ -7 & 1\end{array}\right] \) \( B A+C A=\left[\begin{array}{ll}\text { Ex: 42 } & \square \\ \square & \square\end{array}\right] \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To solve \( B A + C A \), we will first compute \( B A \) and \( C A \) separately. Starting with \( B A \): \[ B = \left[\begin{array}{cc}5 & -1 \\ -7 & 7\end{array}\right], \quad A = \left[\begin{array}{cc}1 & -7 \\ 9 & 3\end{array}\right] \] Calculating \( B A \): \[ B A = \left[\begin{array}{cc}5 & -1 \\ -7 & 7\end{array}\right] \left[\begin{array}{cc}1 & -7 \\ 9 & 3\end{array}\right] = \left[\begin{array}{cc}5 \cdot 1 + (-1) \cdot 9 & 5 \cdot (-7) + (-1) \cdot 3 \\ -7 \cdot 1 + 7 \cdot 9 & -7 \cdot (-7) + 7 \cdot 3\end{array}\right] \] \[ = \left[\begin{array}{cc}5 - 9 & -35 - 3 \\ -7 + 63 & 49 + 21\end{array}\right] = \left[\begin{array}{cc}-4 & -38 \\ 56 & 70\end{array}\right] \] Next, calculating \( C A \): \[ C = \left[\begin{array}{cc}2 & -3 \\ -7 & 1\end{array}\right], \quad A = \left[\begin{array}{cc}1 & -7 \\ 9 & 3\end{array}\right] \] \[ C A = \left[\begin{array}{cc}2 & -3 \\ -7 & 1\end{array}\right] \left[\begin{array}{cc}1 & -7 \\ 9 & 3\end{array}\right] = \left[\begin{array}{cc}2 \cdot 1 + (-3) \cdot 9 & 2 \cdot (-7) + (-3) \cdot 3 \\ -7 \cdot 1 + 1 \cdot 9 & -7 \cdot (-7) + 1 \cdot 3\end{array}\right] \] \[ = \left[\begin{array}{cc}2 - 27 & -14 - 9 \\ -7 + 9 & 49 + 3\end{array}\right] = \left[\begin{array}{cc}-25 & -23 \\ 2 & 52\end{array}\right] \] Now combining both results: \[ B A + C A = \left[\begin{array}{cc}-4 & -38 \\ 56 & 70\end{array}\right] + \left[\begin{array}{cc}-25 & -23 \\ 2 & 52\end{array}\right] \] \[ = \left[\begin{array}{cc}-4 - 25 & -38 - 23 \\ 56 + 2 & 70 + 52\end{array}\right] \] \[ = \left[\begin{array}{cc}-29 & -61 \\ 58 & 122\end{array}\right] \] So, \( B A + C A = \left[\begin{array}{cc}-29 & -61 \\ 58 & 122\end{array}\right] \). In the boxed equation: \[ B A+C A=\left[\begin{array}{ll}-29 & -61 \\ 58 & 122\end{array}\right] \] Hence, you have: \[ \left[\begin{array}{ll} \text{Ex: }42 & \square \\ \square & \square\end{array}\right] \text{ becomes } \left[\begin{array}{ll}-29 & -61 \\ 58 & 122\end{array}\right]. \]
