Solve the following equation for \( d \). Round value to 2 decimal places it needed. \( 500,000=\frac{d(19)}{\left(\frac{0.1}{12}\right)} \) \( d=1 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To solve the equation for \( d \), let's first manipulate the equation: \[ 500,000 = \frac{d(19)}{\left(\frac{0.1}{12}\right)} \] We can rewrite it by getting rid of the fraction in the denominator: \[ 500,000 \cdot \left(\frac{0.1}{12}\right) = d(19) \] Next, calculate \( \frac{0.1}{12} \): \[ \frac{0.1}{12} = 0.0083333... \] Now, multiply that by \( 500,000 \): \[ 500,000 \cdot 0.0083333 \approx 4166.67 \] So, we have: \[ d(19) = 4166.67 \] Now, divide both sides by 19 to solve for \( d \): \[ d = \frac{4166.67}{19} \approx 219.84 \] Therefore, rounded to two decimal places, \( d \) is approximately \( 219.84 \).
