Pregunta
upstudy study bank question image url

- Find the ccm and LCF of: a) \( 12 ; 20 \) b) \( 25 ; 3625 ; 35 \) c) \( 36 ; 54 ; 72 \) d) \( 63 ; 105 ; 147 \) d) \( 693 ; 1617 ; 2541 \)

Ask by Mccarthy Moreno. in South Africa
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the HCF and LCM for each set of numbers: a) 12 and 20: - HCF: 4 - LCM: 60 b) 25, 3625, and 35: - HCF: 5 - LCM: 25,375 c) 36, 54, and 72: - HCF: 18 - LCM: 216 d) 63, 105, and 147: - HCF: 21 - LCM: 2,205 e) 693, 1617, and 2541: - HCF: 231 - LCM: 53,361

Solución

Sure, let's determine the Highest Common Factor (HCF) and Least Common Multiple (LCM) for each set of numbers provided. --- ### **a) \(12\) and \(20\)** **Prime Factorization:** - \(12 = 2^2 \times 3\) - \(20 = 2^2 \times 5\) **HCF:** - Multiply the lowest powers of common prime factors. - Common prime factor: \(2^2\) - **HCF = \(4\)** **LCM:** - Multiply the highest powers of all prime factors. - \(2^2 \times 3 \times 5 = 60\) - **LCM = \(60\)** --- ### **b) \(25\), \(3625\), and \(35\)** **Prime Factorization:** - \(25 = 5^2\) - \(35 = 5 \times 7\) - \(3625 = 5^3 \times 29\) **HCF:** - Common prime factor: \(5\) - Minimum exponent: \(5^1\) - **HCF = \(5\)** **LCM:** - \(5^3 \times 7 \times 29 = 125 \times 7 \times 29 = 25,375\) - **LCM = \(25,375\)** --- ### **c) \(36\), \(54\), and \(72\)** **Prime Factorization:** - \(36 = 2^2 \times 3^2\) - \(54 = 2 \times 3^3\) - \(72 = 2^3 \times 3^2\) **HCF:** - Common prime factors: \(2\) and \(3\) - Minimum exponents: \(2^1 \times 3^2 = 18\) - **HCF = \(18\)** **LCM:** - \(2^3 \times 3^3 = 8 \times 27 = 216\) - **LCM = \(216\)** --- ### **d) \(63\), \(105\), and \(147\)** **Prime Factorization:** - \(63 = 3^2 \times 7\) - \(105 = 3 \times 5 \times 7\) - \(147 = 3 \times 7^2\) **HCF:** - Common prime factors: \(3\) and \(7\) - Minimum exponents: \(3^1 \times 7^1 = 21\) - **HCF = \(21\)** **LCM:** - \(3^2 \times 5 \times 7^2 = 9 \times 5 \times 49 = 2,205\) - **LCM = \(2,205\)** --- ### **e) \(693\), \(1617\), and \(2541\)** **Prime Factorization:** - \(693 = 3^2 \times 7 \times 11\) - \(1617 = 3 \times 7^2 \times 11\) - \(2541 = 3 \times 7 \times 11^2\) **HCF:** - Common prime factors: \(3\), \(7\), and \(11\) - Minimum exponents: \(3^1 \times 7^1 \times 11^1 = 231\) - **HCF = \(231\)** **LCM:** - \(3^2 \times 7^2 \times 11^2 = 9 \times 49 \times 121 = 53,361\) - **LCM = \(53,361\)** --- **Summary:** | **Set of Numbers** | **HCF** | **LCM** | |-------------------------|---------|----------| | **a) 12, 20** | 4 | 60 | | **b) 25, 3625, 35** | 5 | 25,375 | | **c) 36, 54, 72** | 18 | 216 | | **d) 63, 105, 147** | 21 | 2,205 | | **e) 693, 1617, 2541** | 231 | 53,361 | If you have any further questions or need additional assistance, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the least common multiple (LCM) and greatest common factor (GCF) or highest common factor (HCF) of the given sets of numbers, we can use prime factorization or the division method: For the numbers given: a) \( 12 ; 20 \) GCF: 4, LCM: 60 b) \( 25 ; 3625 ; 35 \) GCF: 25, LCM: 12775 c) \( 36 ; 54 ; 72 \) GCF: 18, LCM: 108 d) \( 63 ; 105 ; 147 \) GCF: 21, LCM: 1263 e) \( 693 ; 1617 ; 2541 \) GCF: 231, LCM: 58551 Would you like to dive into the fascinating techniques of calculating GCF and LCM in more detail?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad