Pregunta
upstudy study bank question image url

Solve the system of equations. If there is no solution or infinite solutions, check the corresponding box. \( \left\{\begin{array}{l}2 x+3 y+7 z=4 \\ 2 x+3 y+7 z=3 \\ 2 x+3 y+7 z=8\end{array}\right. \) \( x=\square z=\square \) no solution

Ask by Peterson Nunez. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

There is no solution.

Solución

Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}2x+3y+7z=4\\2x+3y+7z=3\\2x+3y+7z=8\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=\frac{4-3y-7z}{2}\\2x+3y+7z=3\\2x+3y+7z=8\end{array}\right.\) - step2: Substitute the value of \(x:\) \(\left\{ \begin{array}{l}2\times \frac{4-3y-7z}{2}+3y+7z=3\\2\times \frac{4-3y-7z}{2}+3y+7z=8\end{array}\right.\) - step3: Simplify: \(\left\{ \begin{array}{l}4=3\\4=8\end{array}\right.\) - step4: Calculate: \(\left\{ \begin{array}{l}x \in \varnothing \\y \in \varnothing \\z \in \varnothing \end{array}\right.\) - step5: Rewrite: \((x, y, z) \in \varnothing\) The system of equations is: \[ \begin{cases} 2x + 3y + 7z = 4 \\ 2x + 3y + 7z = 3 \\ 2x + 3y + 7z = 8 \end{cases} \] Upon solving this system, we find that there is **no solution**. This is because the left-hand sides of the equations are identical, but the right-hand sides are different, indicating a contradiction. Thus, we can conclude: - \( x = \square \) - \( z = \square \) - No solution: ☑️

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The given system of equations is intriguing because all three equations are linear combinations of \(x\), \(y\), and \(z\) but yield three different constant results. To analyze this, let's look closely: 1. The first equation simplifies to \(2x + 3y + 7z = 4\). 2. The second equation states \(2x + 3y + 7z = 3\). 3. The third equation claims that \(2x + 3y + 7z = 8\). Since all three left-hand sides are identical but the right-hand sides are distinct numbers (4, 3, and 8), it becomes clear that this system cannot hold true simultaneously. One of the axioms of algebra tells us that identical expressions cannot equal different values — thus, there is no solution for this system. So, the box should reflect “no solution” as you've correctly pointed out! To keep things interesting, remember that systems like this are often visualized in three-dimensional space: if you plotted these planes, you'd find that they are parallel and will never intersect! Additionally, systems with such contradictions often arise in real-world scenarios where constraints are miscalculated or improperly defined. For instance, if we were trying to equilibrate three different chemical reactions thought to yield the same total product amount but instead yielding different amounts due to measurement errors or assumptions, we might encounter a situation akin to this system. The conclusion? When dealing with systems, double-check your constants!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad