Pregunta
upstudy study bank question image url

Find the intercepts and graph the equation by plotting points. \( 2 x+3 y=6 \)

Ask by Romero Malone. in the United States
Jan 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph the equation \( 2x + 3y = 6 \), find the x-intercept at \( (3, 0) \) and the y-intercept at \( (0, 2) \). Plot these points and draw a straight line through them to represent the equation.

Solución

To find the intercepts and graph the equation \( 2x + 3y = 6 \), follow these steps: ### 1. Find the Intercepts **a. X-Intercept:** The x-intercept occurs where the graph crosses the x-axis. At this point, \( y = 0 \). \[ 2x + 3(0) = 6 \\ 2x = 6 \\ x = 3 \] **X-Intercept:** \( (3, 0) \) --- **b. Y-Intercept:** The y-intercept occurs where the graph crosses the y-axis. At this point, \( x = 0 \). \[ 2(0) + 3y = 6 \\ 3y = 6 \\ y = 2 \] **Y-Intercept:** \( (0, 2) \) ### 2. Plot the Intercepts on a Coordinate Plane 1. **Plot the X-Intercept:** Place a point at \( (3, 0) \). 2. **Plot the Y-Intercept:** Place a point at \( (0, 2) \). ### 3. Find Additional Points (Optional) To ensure accuracy, you can find additional points by choosing values for \( x \) or \( y \) and solving for the other variable. **Example 1:** Let \( x = 1 \) \[ 2(1) + 3y = 6 \\ 2 + 3y = 6 \\ 3y = 4 \\ y = \frac{4}{3} \approx 1.33 \] **Point:** \( (1, \frac{4}{3}) \) **Example 2:** Let \( y = 1 \) \[ 2x + 3(1) = 6 \\ 2x + 3 = 6 \\ 2x = 3 \\ x = \frac{3}{2} = 1.5 \] **Point:** \( \left( \frac{3}{2}, 1 \right) \) ### 4. Draw the Graph 1. **Draw the Axes:** Draw a horizontal x-axis and a vertical y-axis intersecting at the origin \( (0, 0) \). 2. **Plot the Points:** - \( (3, 0) \) — X-Intercept - \( (0, 2) \) — Y-Intercept - \( (1, \frac{4}{3}) \) — Additional Point - \( \left( \frac{3}{2}, 1 \right) \) — Additional Point 3. **Connect the Points:** Draw a straight line that passes through all the plotted points. This line represents the equation \( 2x + 3y = 6 \). ### 5. Visual Representation Below is a simple graphical representation: ``` y | | * | (0,2) | | * | (1.5,1) | | * | (3,0) | +------------------ x ``` - The points \( (3, 0) \) and \( (0, 2) \) are the intercepts. - The additional points help in drawing the accurate line. ### 6. Slope-Intercept Form (Optional) For better understanding, you can rewrite the equation in slope-intercept form (\( y = mx + b \)): \[ 2x + 3y = 6 \\ 3y = -2x + 6 \\ y = -\frac{2}{3}x + 2 \] - **Slope (\( m \))**: \( -\frac{2}{3} \) - **Y-Intercept (\( b \))**: \( 2 \) This means the line decreases by \( \frac{2}{3} \) units vertically for every 1 unit it moves horizontally to the right. ### Summary - **X-Intercept:** \( (3, 0) \) - **Y-Intercept:** \( (0, 2) \) - **Slope:** \( -\frac{2}{3} \) By plotting these points and using the slope, you can accurately graph the equation \( 2x + 3y = 6 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the intercepts of the equation \( 2x + 3y = 6 \), we can set \( x \) and \( y \) to zero separately. For the \( x \)-intercept, set \( y = 0 \): \( 2x = 6 \) leads to \( x = 3 \). For the \( y \)-intercept, set \( x = 0 \): \( 3y = 6 \) leads to \( y = 2 \). So, the intercepts are \( (3, 0) \) and \( (0, 2) \). To graph the equation, you can plot the intercepts on a coordinate plane and draw a straight line through these points. Additionally, you can check more points like substituting \( x = 1 \) which gives \( y = 4/3 \) or \( x = 2 \) resulting in \( y = 0 \). This will ensure accuracy and make your line more precise! Enjoy plotting!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad