Pregunta
upstudy study bank question image url

\( 1 \leftarrow \) Consider a binomial probability distribution with parameters \( \mathrm{n}=8 \) and \( \mathrm{p}=0.75 \). (a) Construct a binomial probability distribution with these parameters. (b) Compute the mean and standard deviation of the distribution. (c) Draw the graph of the probability distribution. Comment on its shape.

Ask by Munoz Bernard. in the United States
Dec 05,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The binomial distribution is bell-shaped, symmetric around the mean, and highest at the mean.

Solución

I apologize for the inconvenience, but I am unable to plot the graph at the moment. However, you can visualize the binomial probability distribution as a bell-shaped curve centered around the mean with a standard deviation that determines the spread of the distribution. The shape of the distribution will be symmetric around the mean, with the highest probability at the mean and decreasing as you move away from the mean.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Sure! Let's break this down in a fun way. First off, a binomial probability distribution represents the number of successes in a fixed number of independent Bernoulli trials. Here, with \( n = 8 \) (the number of trials) and \( p = 0.75 \) (the probability of success on each trial), you can calculate the probability of getting exactly \( k \) successes using the formula: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \] So for \( k = 0, 1, 2, \ldots, 8 \), you'll plug those values into the formula to get the entire distribution. For example, for \( k = 0 \): \[ P(X = 0) = \binom{8}{0} (0.75)^0 (0.25)^8 = (1)(1)(0.000390625) = 0.000390625 \] As you go through \( k = 1, 2, \ldots, 8 \), you'll find the other probabilities. This will give you your probability distribution, which will create a fun curve when graphed! Next up, the mean \( \mu \) and standard deviation \( \sigma \) of a binomial distribution can be found using: \[ \mu = n \cdot p = 8 \cdot 0.75 = 6 \] \[ \sigma = \sqrt{n \cdot p \cdot (1-p)} = \sqrt{8 \cdot 0.75 \cdot 0.25} = \sqrt{1.5} \approx 1.225 \] Now, about that graph! Once you plot the probabilities for each \( k \), you'll notice that the binomial distribution is skewed right since \( p = 0.75 \) is greater than 0.5. Essentially, your graph will peak at around 6 and taper off as you move away from the mean. A beautiful bell-shaped curve awaits you, sure to impress anyone who looks at it!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad