Pregunta
upstudy study bank question image url

Evaluate the following integral using trigonometric substitution. \( \int_{0}^{1} \frac{d x}{\sqrt{4-x^{2}}} \) What substitution will be the most helpful for evaluating this integral? A. \( x=2 \sec \theta \) B. \( x=2 \tan \theta \) C. \( x=2 \sin \theta \)

Ask by Mccarthy Marsh. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The most helpful substitution is \( x = 2 \sin \theta \).

Solución

To evaluate the integral   ∫₀¹ dx/√(4 − x²) using a trigonometric substitution, we look for a substitution that will simplify the square root in the denominator. Since the integrand contains √(4 − x²), a common substitution is to let   x = 2 sinθ. This substitution is chosen because it transforms the square root as follows: 1. Express x in terms of θ: x = 2 sinθ. 2. Differentiate: dx = 2 cosθ dθ. 3. Substitute into the square root:   √(4 − x²) = √(4 − 4 sin²θ) = √(4(1 − sin²θ)) = √(4 cos²θ) = 2|cosθ|. 4. For the range of x from 0 to 1, θ will fall in [0, π/6]. In this interval, cosθ is positive, so |cosθ| = cosθ. Thus, the substitution simplifies the integrand:   dx/√(4 − x²) = (2 cosθ dθ)/(2 cosθ) = dθ. The limits of integration also change: - When x = 0, 0 = 2 sinθ ⇒ θ = 0. - When x = 1, 1 = 2 sinθ ⇒ sinθ = 1/2 ⇒ θ = π/6. The integral becomes   ∫₀^(π/6) dθ = θ|₀^(π/6) = π/6. Thus, the substitution that is most helpful is:   x = 2 sinθ. So, the correct choice is C.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To evaluate the integral \( \int_{0}^{1} \frac{d x}{\sqrt{4-x^{2}}} \), the most helpful substitution is \( x = 2 \sin \theta \). This substitution is particularly beneficial because it transforms the expression under the square root into a simpler form, allowing for easier integration. Consequently, \( dx = 2 \cos \theta \, d\theta \) and the limits of integration will change accordingly as \( x \) varies from 0 to 1. After making the substitution, the square root becomes \( \sqrt{4 - (2 \sin \theta)^2} = \sqrt{4(1 - \sin^2 \theta)} = 2 \cos \theta \). Plugging this into the integral, we simplify it significantly, facilitating the integration process. So, choosing \( x = 2 \sin \theta \) not only helps in substituting seamlessly but also makes the integral much more manageable!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad