Points: 0 of 1 Decide whether the following statement is true or false. \[ \begin{array}{cccc} - 2 \longdiv { 5 } \begin{array} { c c c } { 4 } & { 3 } & { 1 } \\ { } & { - 1 0 } & { 1 2 } \end{array} - 3 0 \\ \hline 5 & -6 & 15 & -29 \end{array} \text { means } \frac{5 x^{3}+4 x^{2}+3 x+1}{x+2}=5 x^{2}-6 x+15+\frac{-29}{x+2} \] Choose the correct answer below. True False
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
The statement is true! What you’re looking at is the process of polynomial long division. When dividing the polynomial \(5x^3 + 4x^2 + 3x + 1\) by \(x + 2\), the result can be expressed as a polynomial quotient (in this case \(5x^2 - 6x + 15\)) plus a remainder term \(\frac{-29}{x + 2}\), making it a proper division representation. Now, the next time you're handling polynomials, remember to always double-check your long division steps. Keeping your terms lined up neatly helps avoid common pitfalls, like misplaced coefficients or incorrect signs. If you get confused, just go slow and do it step by step!
