Pregunta
If \( y=\sin (x) \), then \( \frac{d^{96} y}{d x^{96}} \) a. \( -\cos (x) \) b. \( \sin (x) \) c. \( -\sin (x) \) d. \( \cos (x) \)
Ask by Montgomery Lawson. in Palestine
Feb 16,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The 96th derivative of \( y = \sin(x) \) is \( \sin(x) \).
Solución
To solve the problem, notice that the derivatives of sin(x) repeat every 4 steps:
y = sin(x)
y' = cos(x)
y'' = –sin(x)
y''' = –cos(x)
y⁽⁴⁾ = sin(x)
Since the cycle repeats every 4, the 96th derivative is given by:
96 mod 4 = 0
Thus, the 96th derivative of sin(x) is sin(x).
The correct answer is b. sin(x).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
When differentiating \( y = \sin(x) \), we notice a repeating cycle every four derivatives: 1. \( \frac{d y}{d x} = \cos(x) \) 2. \( \frac{d^2 y}{d x^2} = -\sin(x) \) 3. \( \frac{d^3 y}{d x^3} = -\cos(x) \) 4. \( \frac{d^4 y}{d x^4} = \sin(x) \) Since this pattern repeats every four derivatives, to find \( \frac{d^{96} y}{d x^{96}} \), we calculate \( 96 \mod 4 \), which is \( 0 \). This means that \( \frac{d^{96} y}{d x^{96}} \) is equivalent to \( \frac{d^0 y}{d x^0} = \sin(x) \). So, the answer is \( \sin(x) \), or option b.
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium