Pregunta
upstudy study bank question image url

nothetic division to divide. \( 2 x^{2}-x \) by \( (x-2) \) the distance between the given points.

Ask by Murphy John. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To divide \( 2x^2 - x \) by \( x - 2 \) using polynomial long division, the result is \( 2x + 3 \) with a remainder of 6. For calculating the distance between two points, please provide their coordinates.

Solución

Divide the polynomials by following steps: - step0: Using Long Division to Divide Polynomials: \(\left(2x^{2}-x\right)\div \left(x-2\right)\) - step1: Calculate: \(\left(2x+3\right)\text{ }\textrm{remainder}\text{ }6\) Let's solve the two parts of your request step by step. ### Part 1: Polynomial Long Division We need to divide \( 2x^2 - x \) by \( x - 2 \). 1. **Set up the division**: - Dividend: \( 2x^2 - x \) - Divisor: \( x - 2 \) 2. **Perform the division**: - Divide the leading term of the dividend \( 2x^2 \) by the leading term of the divisor \( x \) to get \( 2x \). - Multiply \( 2x \) by the entire divisor \( (x - 2) \) to get \( 2x^2 - 4x \). - Subtract this from the original dividend: \[ (2x^2 - x) - (2x^2 - 4x) = 3x \] - Now, bring down the next term (if any). In this case, there are no more terms to bring down. 3. **Repeat the process**: - Divide \( 3x \) by \( x \) to get \( 3 \). - Multiply \( 3 \) by \( (x - 2) \) to get \( 3x - 6 \). - Subtract: \[ 3x - (3x - 6) = 6 \] 4. **Final result**: - The quotient is \( 2x + 3 \) and the remainder is \( 6 \). - Therefore, the result of the division is: \[ 2x + 3 \text{ remainder } 6 \] ### Part 2: Distance Between Given Points It seems there was a misunderstanding regarding the distance between points, as no specific points were provided. If you have two points, say \( (x_1, y_1) \) and \( (x_2, y_2) \), the distance \( d \) between them can be calculated using the formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Please provide the coordinates of the points you want to calculate the distance between, and I can help you with that!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To divide \( 2x^2 - x \) by \( (x - 2) \) using synthetic division, you'd set up the synthetic division with the zero of the divisor, which is \( x = 2 \). The coefficients of the polynomial \( 2x^2 - x \) are \( 2 \) and \( -1 \) (remember to include a zero for the missing \( x^1 \) term, making it \( 2, 0, -1 \)). Drop the first coefficient, multiply it by \( 2 \), and continue the process to find the quotient and remainder! To calculate the distance between two points in a two-dimensional space, you can use the distance formula: \( d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \). This formula derives from the Pythagorean theorem and effectively gives you the straight-line distance between any two points, say \( (x_1, y_1) \) and \( (x_2, y_2) \). So, plug in your points, crunch those numbers, and voilà—the distance is revealed!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad