Pregunta
upstudy study bank question image url

QUESTION 2 2.1 The arithmetic series \( 3+5+7+\ldots+103 \) is given. 2.1.1 Determine the general term \( 2.1 .2 \quad \) Calculate the number of terms in the given series \( 2.1 .3 \quad \) Hence, write the series in sigma notation 2.2 Calculate \( \boldsymbol{n} \) if : 2.3 \( \sum_{n=2}^{n}(2 \boldsymbol{n}+\mathbf{1})>\mathbf{1 9 2} \) The sum of the \( 1^{\text {st }} \) and \( 2^{\text {nd }} \) terms of a geometric series is 30 , and the sum to infinity is 54 . Determine the \( 1^{\text {st }} \) term \( \boldsymbol{a} \), and the common ratio, \( \boldsymbol{r} \), with \( \boldsymbol{r}>\mathbf{0} \).

Ask by Morrison Munoz. in South Africa
Mar 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- General term: \( 2n + 1 \) - Number of terms: 51 - Sigma notation: \( \sum_{n=1}^{51} (2n + 1) \) - \( n \): 14 - First term \( a \): 18 - Common ratio \( r \): \( \frac{2}{3} \)

Solución

Let's solve the problem step by step. ### 2.1 Arithmetic Series \( 3 + 5 + 7 + \ldots + 103 \) #### 2.1.1 Determine the general term The series is an arithmetic series where the first term \( a = 3 \) and the common difference \( d = 5 - 3 = 2 \). The general term \( T_n \) of an arithmetic series can be expressed as: \[ T_n = a + (n - 1)d \] Substituting the values of \( a \) and \( d \): \[ T_n = 3 + (n - 1) \cdot 2 = 3 + 2n - 2 = 2n + 1 \] #### 2.1.2 Calculate the number of terms in the given series To find the number of terms \( n \), we set the last term equal to 103: \[ T_n = 103 \] Substituting the expression for \( T_n \): \[ 2n + 1 = 103 \] Now, solve for \( n \): \[ 2n = 103 - 1 = 102 \\ n = \frac{102}{2} = 51 \] #### 2.1.3 Write the series in sigma notation The series can be expressed in sigma notation as: \[ \sum_{n=1}^{51} (2n + 1) \] ### 2.2 Calculate \( n \) if \( \sum_{n=2}^{n}(2n + 1) > 192 \) First, we need to calculate the sum \( \sum_{n=2}^{k} (2n + 1) \) for some \( k \). The sum can be calculated as follows: \[ \sum_{n=2}^{k} (2n + 1) = \sum_{n=2}^{k} 2n + \sum_{n=2}^{k} 1 \] The first part is: \[ \sum_{n=2}^{k} 2n = 2 \sum_{n=2}^{k} n = 2 \left( \frac{k(k + 1)}{2} - 1 \right) = k(k + 1) - 2 \] The second part is: \[ \sum_{n=2}^{k} 1 = k - 1 \] Combining these: \[ \sum_{n=2}^{k} (2n + 1) = k(k + 1) - 2 + (k - 1) = k^2 + k - 3 \] Now, we set up the inequality: \[ k^2 + k - 3 > 192 \] This simplifies to: \[ k^2 + k - 195 > 0 \] Now, we will solve the quadratic equation \( k^2 + k - 195 = 0 \) using the quadratic formula: \[ k = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1 + 780}}{2} = \frac{-1 \pm \sqrt{781}}{2} \] Calculating \( \sqrt{781} \): \[ \sqrt{781} \approx 27.93 \] Thus: \[ k \approx \frac{-1 + 27.93}{2} \approx 13.465 \] Since \( k \) must be an integer, we check \( k = 14 \) and \( k = 13 \). Calculating for \( k = 14 \): \[ 14^2 + 14 - 195 = 196 + 14 - 195 = 15 > 0 \] Calculating for \( k = 13 \): \[ 13^2 + 13 - 195 = 169 + 13 - 195 = -13 < 0 \] Thus, \( k = 14 \) is the smallest integer satisfying the inequality. ### 2.3 Geometric Series The first term \( a \) and the common ratio \( r \) satisfy the following conditions: 1. \( a + ar = 30 \) 2. \( \frac{a}{1 - r} = 54 \) From the first equation: \[ a(1 + r) = 30 \quad \text{(1)} \] From the second equation: \[ a = 54(1 - r) \quad \text{(2)} \] Substituting (2) into (1): \[ 54(1 - r)(1 + r) = 30 \] Expanding: \[ 54(1 - r^2) = 30 \] This simplifies to: \[ 54 - 54r^2 = 30 \\ 54r^2 = 54 - 30 = 24 \\ r^2 = \frac{24}{54} = \frac{4}{9} \\ r = \frac{2}{3} \quad \text{(since \( r > 0 \))} \] Now substituting \( r \) back into (2) to find \( a \): \[ a = 54(1 - \frac{2}{3}) = 54 \cdot \frac{1}{3} = 18 \] ### Final Answers - General term: \( 2n + 1 \) - Number of terms: \( 51 \) - Sigma notation: \( \sum_{n=1}^{51} (2n + 1) \) - \( n \): \( 14 \) - First term \( a \): \( 18 \) - Common ratio \( r \): \( \frac{2}{3} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The arithmetic series \( 3 + 5 + 7 + \ldots + 103 \) consists of odd numbers starting from 3. The general term can be expressed as \( a_n = 2n + 1 \), where \( n \) starts from 1. As for the number of terms, we can find it by setting \( a_n = 103 \) and solving for \( n \). This gives us \( 2n + 1 = 103 \), leading to \( n = 51 \). Now, the sigma notation for the series can be written as \( \sum_{n=1}^{51} (2n + 1) \). That's crisp and neat, isn't it? 🌟 When diving into series, it's important to know the difference between arithmetic and geometric series. In a geometric series, like in your second question, the first term \(a\) is related to the common ratio \(r\) through the sums provided. You can use the equations \(a + ar = 30\) for the first and second terms, and \(\frac{a}{1 - r} = 54\) for the sum to infinity. Solving these simultaneously will reveal the mysteries of \(a\) and \(r\). Happy calculating! 🧮✨

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad