Pregunta
If \( f(x)=\frac{1}{x^{2}} \), find \( f^{\prime}(2) \)
Ask by Kelley Medina. in the United States
Feb 12,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( f'(2) = -\frac{1}{4} \)
Solución
We are given the function f(x) = 1/x², which can be rewritten as f(x) = x^(–2).
Step 1: Differentiate using the power rule.
f '(x) = d/dx [x^(–2)] = –2 x^(–3) = –2/(x³).
Step 2: Evaluate at x = 2.
f '(2) = –2/(2³) = –2/8 = –1/4.
Thus, f '(2) = –1/4.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To find \( f'(2) \) for the function \( f(x) = \frac{1}{x^2} \), we first need to compute the derivative \( f'(x) \). Using the power rule, we can rewrite \( f(x) \) as \( f(x) = x^{-2} \). Taking the derivative, we have: \[ f'(x) = -2x^{-3} = -\frac{2}{x^3} \] Now, we can evaluate the derivative at \( x = 2 \): \[ f'(2) = -\frac{2}{2^3} = -\frac{2}{8} = -\frac{1}{4} \] Thus, the value of \( f'(2) \) is \(-\frac{1}{4}\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium