Pregunta
upstudy study bank question image url

A horse race has 10 entries and one person owns 3 of those horses. Assuming that there are no ties, what is the probability that those three horses finish first, second and third (regardless of order)? The probability that the three horses finish first, second and third is (Round to four decimal places as needed.)

Ask by Edwards Vaughn. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability is 0.0083.

Solución

To find the probability that the person’s three horses finish in the top three spots (in any order), follow these steps: 1. Determine the total number of possible outcomes for the top three finishes. Since the race has 10 horses and there are no ties, the top three positions can be filled in:   10 × 9 × 8 = 720 ways. 2. Determine the number of favorable outcomes. For the event where the person’s three horses finish first, second, and third, these positions can be arranged in:   3! = 6 ways (because the order among the three horses matters). 3. Compute the probability:   Probability = Favorable outcomes / Total outcomes = 6 / 720 = 1 / 120. 4. Convert this to a decimal:   1 / 120 ≈ 0.0083. Thus, the probability (rounded to four decimal places) that the person’s three horses finish first, second, and third is 0.0083.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the probability that the owner's three horses finish in the top three positions, we first need to calculate the total number of ways the 10 horses can finish the race. The top three positions can be filled in 10 × 9 × 8 = 720 ways. Now, since the owner's three horses can finish in the top spots, we can arrange those three horses in 3! (which is 6) different ways in first, second, and third positions. Therefore, the number of favorable outcomes is 6. The probability is then calculated as the number of favorable outcomes divided by the total outcomes: P = (Number of favorable outcomes) / (Total outcomes) = 6 / 720 = 1 / 120. Finally, rounding to four decimal places gives approximately 0.0083.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad