Pregunta
upstudy study bank question image url

Consider the initial value problem \[ y^{\prime}-5 y=20 t+4 e^{t}, \quad y(0)=y_{0} \] (a) Solve the initial value problem. (enter y0 for \( y_{0} \) ). \( y(t)= \) (b) Determine the value of \( y_{0} \) that separates solutions that grow positively as \( t \rightarrow \infty \) from those that grow negatively. \( y_{0}= \)

Ask by Phillips Cruz. in the United States
Mar 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The solution to the initial value problem is: \[ y(t) = \left(y_0 + \frac{9}{5}\right)e^{5t} - 4t - \frac{4}{5} - e^t \] (b) The value of \( y_0 \) that separates solutions that grow positively as \( t \rightarrow \infty \) from those that grow negatively is: \[ y_0 = -\frac{9}{5} \]

Solución

We start with the differential equation \[ y'-5y=20t+4e^t, \quad y(0)=y_0. \] **Step 1. Multiply through by the integrating factor** The integrating factor is \[ \mu(t)=e^{-5t}. \] Multiplying both sides by \(e^{-5t}\), we have \[ e^{-5t}y' - 5e^{-5t}y = 20te^{-5t}+4e^{-5t}e^t. \] Notice that the left‐hand side is the derivative of \(\left(e^{-5t}y\right)\). Also, simplifying the right‐hand side: \[ 4e^{-5t}e^t=4e^{-4t}. \] Thus, the equation becomes \[ \frac{d}{dt}\left(e^{-5t}y\right)=20te^{-5t}+4e^{-4t}. \] **Step 2. Integrate both sides** Integrate with respect to \(t\): \[ e^{-5t}y=\int\left(20te^{-5t}+4e^{-4t}\right)dt+C, \] where \(C\) is the constant of integration. We split the integral into two parts: \[ I_1=\int 20te^{-5t}dt \quad \text{and} \quad I_2=\int 4e^{-4t}dt. \] **Step 3. Compute \(I_1=\int 20te^{-5t}dt\)** Use integration by parts, letting \[ u=t,\quad dv=20e^{-5t}dt. \] Then, \[ du=dt,\quad v=\int 20e^{-5t}dt=20\left(-\frac{1}{5}e^{-5t}\right)=-4e^{-5t}. \] Now apply integration by parts: \[ I_1=uv-\int v\,du=-4te^{-5t}-\int \left(-4e^{-5t}\right)dt=-4te^{-5t}+4\int e^{-5t}dt. \] The remaining integral is \[ \int e^{-5t}dt=-\frac{1}{5}e^{-5t}, \] so \[ I_1=-4te^{-5t}+4\left(-\frac{1}{5}e^{-5t}\right)=-4te^{-5t}-\frac{4}{5}e^{-5t}. \] **Step 4. Compute \(I_2=\int 4e^{-4t}dt\)** \[ I_2=4\int e^{-4t}dt=4\left(-\frac{1}{4}e^{-4t}\right)=-e^{-4t}. \] Thus, together we have \[ e^{-5t}y=-4te^{-5t}-\frac{4}{5}e^{-5t}-e^{-4t}+C. \] **Step 5. Solve for \(y(t)\)** Multiply the entire equation by \(e^{5t}\): \[ y=-4t-\frac{4}{5}-e^{t}+Ce^{5t}. \] That is, the general solution is \[ y(t)=Ce^{5t}-4t-\frac{4}{5}-e^t. \] **Step 6. Apply the initial condition \(y(0)=y_0\)** Substitute \(t=0\) into the solution: \[ y(0)=C\cdot e^{0}-4\cdot 0-\frac{4}{5}-e^0=C-\frac{4}{5}-1. \] Since \(y(0)=y_0\), we have \[ C-\frac{9}{5}=y_0 \quad \Longrightarrow \quad C=y_0+\frac{9}{5}. \] Thus, the solution to the initial value problem is \[ y(t)=\left(y_0+\frac{9}{5}\right)e^{5t}-4t-\frac{4}{5}-e^t. \] **Step 7. Determine the critical value of \(y_0\) for growth** As \(t\rightarrow\infty\), the term \(\left(y_0+\frac{9}{5}\right)e^{5t}\) dominates the behavior of \(y(t)\), because the other terms either grow much more slowly or decay. For the solution not to grow positively or negatively, the coefficient of \(e^{5t}\) must vanish: \[ y_0+\frac{9}{5}=0. \] Thus, \[ y_0=-\frac{9}{5}. \] --- \[ \boxed{\begin{aligned} \text{(a)}\quad y(t)&=\left(y_0+\frac{9}{5}\right)e^{5t}-4t-\frac{4}{5}-e^t,\\[1mm] \text{(b)}\quad y_0&=-\frac{9}{5}. \end{aligned}} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the initial value problem, we start with the differential equation \[ y' - 5y = 20t + 4e^t. \] This is a first-order linear differential equation. We can use an integrating factor, \( \mu(t) = e^{-5t} \), to simplify the equation. Multiplying both sides by the integrating factor gives: \[ e^{-5t} y' - 5 e^{-5t} y = e^{-5t}(20t + 4e^t). \] This can be simplified to: \[ \frac{d}{dt}(e^{-5t}y) = 20te^{-5t} + 4e^{-4t}. \] Next, integrate both sides: \[ e^{-5t} y = \int (20te^{-5t} + 4e^{-4t}) dt. \] Using integration by parts for the first integral and the direct integral for the second, we find: 1. For \( 20te^{-5t} \): Let \( u = t \) and \( dv = 20e^{-5t} dt \) which gives: \[ = -4te^{-5t} - 4\int e^{-5t} dt = -4te^{-5t} - \frac{4}{5} e^{-5t} \] 2. For \( 4e^{-4t} \): \[ \int 4e^{-4t} dt = -e^{-4t} + C. \] Thus, \[ e^{-5t} y = (-4te^{-5t} - \frac{4}{5}e^{-5t}) - e^{-4t} + C. \] Multiplying through by \( e^{5t} \) to solve for \( y(t) \): \[ y(t) = -4t - \frac{4}{5} - e^{t} + Ce^{5t}. \] Using the initial condition \( y(0) = y_0 \): \[ y(0) = -4(0) - \frac{4}{5} - e^0 + Ce^0 = -\frac{4}{5} - 1 + C = y_0. \] This gives us: \[ C = y_0 + \frac{9}{5}. \] So the final solution is: \[ y(t) = -4t - \frac{4}{5} - e^t + \left( y_0 + \frac{9}{5} \right)e^{5t}. \] Now to isolate the growing solutions as \( t \to \infty \): 1. The term \( e^{5t} \) grows faster than any polynomial or \( e^t \); thus, to separate solutions, set \( y_0 + \frac{9}{5} = 0 \) leads to: \[ y_0 = -\frac{9}{5}. \] In summary, the solutions can be represented as: (a) \( y(t) = -4t - \frac{4}{5} - e^t + \left( y_0 + \frac{9}{5} \right)e^{5t}. \) (b) \( y_0 = -\frac{9}{5}. \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad