Consider the initial value problem \[ y^{\prime}-5 y=20 t+4 e^{t}, \quad y(0)=y_{0} \] (a) Solve the initial value problem. (enter y0 for \( y_{0} \) ). \( y(t)= \) (b) Determine the value of \( y_{0} \) that separates solutions that grow positively as \( t \rightarrow \infty \) from those that grow negatively. \( y_{0}= \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To solve the initial value problem, we start with the differential equation \[ y' - 5y = 20t + 4e^t. \] This is a first-order linear differential equation. We can use an integrating factor, \( \mu(t) = e^{-5t} \), to simplify the equation. Multiplying both sides by the integrating factor gives: \[ e^{-5t} y' - 5 e^{-5t} y = e^{-5t}(20t + 4e^t). \] This can be simplified to: \[ \frac{d}{dt}(e^{-5t}y) = 20te^{-5t} + 4e^{-4t}. \] Next, integrate both sides: \[ e^{-5t} y = \int (20te^{-5t} + 4e^{-4t}) dt. \] Using integration by parts for the first integral and the direct integral for the second, we find: 1. For \( 20te^{-5t} \): Let \( u = t \) and \( dv = 20e^{-5t} dt \) which gives: \[ = -4te^{-5t} - 4\int e^{-5t} dt = -4te^{-5t} - \frac{4}{5} e^{-5t} \] 2. For \( 4e^{-4t} \): \[ \int 4e^{-4t} dt = -e^{-4t} + C. \] Thus, \[ e^{-5t} y = (-4te^{-5t} - \frac{4}{5}e^{-5t}) - e^{-4t} + C. \] Multiplying through by \( e^{5t} \) to solve for \( y(t) \): \[ y(t) = -4t - \frac{4}{5} - e^{t} + Ce^{5t}. \] Using the initial condition \( y(0) = y_0 \): \[ y(0) = -4(0) - \frac{4}{5} - e^0 + Ce^0 = -\frac{4}{5} - 1 + C = y_0. \] This gives us: \[ C = y_0 + \frac{9}{5}. \] So the final solution is: \[ y(t) = -4t - \frac{4}{5} - e^t + \left( y_0 + \frac{9}{5} \right)e^{5t}. \] Now to isolate the growing solutions as \( t \to \infty \): 1. The term \( e^{5t} \) grows faster than any polynomial or \( e^t \); thus, to separate solutions, set \( y_0 + \frac{9}{5} = 0 \) leads to: \[ y_0 = -\frac{9}{5}. \] In summary, the solutions can be represented as: (a) \( y(t) = -4t - \frac{4}{5} - e^t + \left( y_0 + \frac{9}{5} \right)e^{5t}. \) (b) \( y_0 = -\frac{9}{5}. \)
