Pregunta
upstudy study bank question image url

Lunsider the following polynomial function. \[ f(x)=(x-2)(x+1)^{2}(x-1)^{2} \] Answer the questions regarding the graph of \( f \). Thien, use this information to graph the function. \[ \begin{array}{l}\text { (a) Choose the end behavior of the graph of } f \text {. } \\ \text { Choose One List each real zero of } f \text { according to the behavior of the graph at the } x \text {-axis near that } \\ \text { zero. If there is more than one answer, separate them with commas. If there is no } \\ \text { answer, click on "None". } \\ \text { zero(s) where the graph crosses the } x \text {-axis: } \\ \text { Zero(s) where the graph touches, but does not cross the } x \text {-axis: }\end{array} \] (c) Find the \( y \)-intercept of the graph of \( f \) : (d) Graph \( f(x)=(x-2)(x+1)^{2}(x-1)^{2} \) by doing the following. - Plot all points where the graph of \( f \) intersects the \( x \)-axis or \( y \)-axis. - For each point on the \( x \)-axis, solost th

Ask by Spencer Coles. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- **End Behavior:** - As \( x \to -\infty \), \( f(x) \to -\infty \) - As \( x \to +\infty \), \( f(x) \to +\infty \) - **Zeros:** - Crosses the x-axis at \( x = 2 \) - Touches the x-axis at \( x = -1 \) and \( x = 1 \) - **Y-intercept:** - \( (0, -2) \) **Graph Description:** - The graph starts from the bottom left, rises to touch the x-axis at \( x = -1 \), continues upwards to touch the x-axis again at \( x = 1 \), then crosses the x-axis at \( x = 2 \). - It passes through the y-intercept at \( (0, -2) \). - As \( x \) approaches negative infinity, the graph goes down, and as \( x \) approaches positive infinity, it goes up. **Summary:** The function \( f(x) = (x-2)(x+1)^{2}(x-1)^{2} \) has a degree of 5 with a positive leading coefficient, resulting in the described end behavior. It crosses the x-axis at \( x = 2 \) and touches it at \( x = -1 \) and \( x = 1 \). The y-intercept is at \( (0, -2) \). The graph reflects the behavior of the zeros and the end behavior, providing a clear visual representation of the function.

Solución

It seems that I am unable to generate a graph directly. However, I can guide you on how to plot the function \( f(x) = (x-2)(x+1)^{2}(x-1)^{2} \) using the information we have gathered. ### Steps to Graph the Function 1. **Plot the X-intercepts:** - Mark the points \( (2, 0) \), \( (-1, 0) \), and \( (1, 0) \) on the x-axis. - At \( x = 2 \), the graph crosses the x-axis. - At \( x = -1 \) and \( x = 1 \), the graph touches the x-axis. 2. **Plot the Y-intercept:** - Mark the point \( (0, -2) \) on the y-axis. 3. **Determine the Behavior:** - As \( x \to -\infty \), the graph goes downwards (to \( -\infty \)). - As \( x \to +\infty \), the graph goes upwards (to \( +\infty \)). - Between the intercepts, the graph will rise and fall according to the behavior at the intercepts: - From \( (-\infty, -1) \), the graph is below the x-axis. - It touches the x-axis at \( -1 \) and turns back up. - It rises to the x-axis at \( (1, 0) \) and turns back down. - It rises again to cross the x-axis at \( (2, 0) \). 4. **Sketch the Curve:** - Start from the left, draw a curve that approaches the x-axis from below, touches at \( (-1, 0) \), rises to touch at \( (1, 0) \), and finally crosses at \( (2, 0) \). - Ensure the curve goes through the y-intercept \( (0, -2) \). ### Conclusion By following these steps, you can create an accurate sketch of the polynomial function \( f(x) \). If you have graphing software or a graphing calculator, you can input the function directly to visualize it more precisely.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To understand the end behavior of the polynomial \( f(x)=(x-2)(x+1)^{2}(x-1)^{2} \), we look at the leading term. Since it's a third-degree polynomial (the highest power of \( x \) when expanded), the end behavior will extend towards positive infinity as \( x \) approaches positive infinity, and towards negative infinity as \( x \) approaches negative infinity. Now, for the roots: - The zeros of \( f \) are \( x = 2 \), \( x = -1 \), and \( x = 1 \). - The zero \( x=2 \) is a single root, so the graph will cross the x-axis. - The zeros \( x = -1 \) and \( x = 1 \) each have multiplicity 2, so the graph will touch the x-axis at these points without crossing. Now, for the \( y \)-intercept: To find it, plug \( x = 0 \) into the function: \[ f(0) = (0-2)(0+1)^{2}(0-1)^{2} = (-2)(1)(1) = -2. \] Thus, the \( y \)-intercept is at the point \( (0, -2) \). Next, let's plot the points where \( f(x) \) intersects the axes: - \( x \)-intercepts: \( (2, 0) \) crosses the x-axis, \( (-1, 0) \) and \( (1, 0) \) touch the x-axis. - \( y \)-intercept: \( (0, -2) \). To sketch the graph: - Start from the left (where \( y \to -\infty \)). - It will touch \( (-1, 0) \), rise to cross \( (2, 0) \), then touch at \( (1, 0) \) before going toward positive infinity on the right side. Happy graphing!

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad