Solve \( 2 x^{2}+3 x+4=0 \) Give exact answer(s). If necessary, separate answers using a comma.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To solve the quadratic equation \( 2x^{2} + 3x + 4 = 0 \), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 2 \), \( b = 3 \), and \( c = 4 \). Plugging these values into the formula gives: \[ x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot 4}}{2 \cdot 2} \] \[ x = \frac{-3 \pm \sqrt{9 - 32}}{4} \] \[ x = \frac{-3 \pm \sqrt{-23}}{4} \] Since the discriminant \( (-23) \) is negative, the solutions will be complex. We can express \( \sqrt{-23} \) as \( i\sqrt{23} \): \[ x = \frac{-3 \pm i\sqrt{23}}{4} \] Thus, the exact answers are: \[ x = \frac{-3 + i\sqrt{23}}{4}, \frac{-3 - i\sqrt{23}}{4} \]
