Responder
The function \( y=3 \sin \left(\frac{\theta}{3}-\frac{\pi}{2}\right)+2 \) has a domain of all real numbers, a range of \([-1, 5]\), critical points at \( \theta = 3(n + 1)\pi \), and inflection points at \( \theta = 3n\pi + \frac{3\pi}{2} \). Its periodicity is \( 6\pi \).
Solución
Function by following steps:
- step0: Determine the period:
\(y=-3\cos\left(\frac{\theta }{3}\right)+2\)
- step1: Calculate:
\(y=-3\cos\left(\frac{1}{3}\theta \right)+2\)
- step2: The period of the function is \(\frac{2\pi }{\left|\frac{1}{3}\right|}:\)
\(\frac{2\pi }{\left|\frac{1}{3}\right|}\)
- step3: Calculate:
\(\frac{2\pi }{\frac{1}{3}}\)
- step4: Divide the terms:
\(6\pi \)
It seems there was an issue retrieving the results for the analysis of the function \( y=3 \sin \left(\frac{\theta}{3}-\frac{\pi}{2}\right)+2 \) for domain, range, critical points, inflection points, and intervals. However, I was able to determine the periodicity of the function.
### Periodicity
The periodicity of the function is \( 6\pi \). This means that the function repeats its values every \( 6\pi \) units along the \(\theta\) axis.
### Further Analysis
Let's analyze the function step by step to find the domain, range, critical points, and inflection points manually.
1. **Domain**:
- The sine function is defined for all real numbers, so the domain of \( y \) is all real numbers:
\[
\text{Domain: } (-\infty, \infty)
\]
2. **Range**:
- The sine function oscillates between -1 and 1. Therefore, multiplying by 3 gives us a range of -3 to 3. Adding 2 shifts this range up by 2:
\[
\text{Range: } [-1, 5]
\]
3. **Critical Points**:
- To find critical points, we need to take the derivative of \( y \) and set it to zero. The derivative is:
\[
y' = 3 \cdot \cos\left(\frac{\theta}{3} - \frac{\pi}{2}\right) \cdot \frac{1}{3} = \cos\left(\frac{\theta}{3} - \frac{\pi}{2}\right)
\]
Setting \( y' = 0 \):
\[
\cos\left(\frac{\theta}{3} - \frac{\pi}{2}\right) = 0
\]
This occurs when:
\[
\frac{\theta}{3} - \frac{\pi}{2} = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z})
\]
Solving for \(\theta\):
\[
\theta = 3\left(n\pi + \pi\right) = 3(n + 1)\pi
\]
Thus, the critical points occur at \( \theta = 3(n + 1)\pi \).
4. **Inflection Points**:
- Inflection points occur where the second derivative changes sign. The second derivative is:
\[
y'' = -\frac{1}{3} \sin\left(\frac{\theta}{3} - \frac{\pi}{2}\right)
\]
Setting \( y'' = 0 \):
\[
-\frac{1}{3} \sin\left(\frac{\theta}{3} - \frac{\pi}{2}\right) = 0
\]
This occurs when:
\[
\sin\left(\frac{\theta}{3} - \frac{\pi}{2}\right) = 0
\]
This occurs at:
\[
\frac{\theta}{3} - \frac{\pi}{2} = n\pi \quad (n \in \mathbb{Z})
\]
Solving for \(\theta\):
\[
\theta = 3n\pi + \frac{3\pi}{2}
\]
### Summary
- **Domain**: \( (-\infty, \infty) \)
- **Range**: \( [-1, 5] \)
- **Critical Points**: \( \theta = 3(n + 1)\pi \)
- **Inflection Points**: \( \theta = 3n\pi + \frac{3\pi}{2} \)
- **Periodicity**: \( 6\pi \)
If you need further analysis or specific calculations, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución