Pregunta
upstudy study bank question image url

Weeding and watering times The cucumbers require 20 minutes of weeding and watering time, while the carrots require 15 minutes of weeding and watering. Paul and Art have up to 2 hours each day that can be used for weeding and watering both the cucumbers and the carrots. Start-up costs: Paul and Art are able to spend up to \( \$ 25 \) on carrot seed and cucumber starts. (Starts are small cucumber plants.) The cost for the cucumber plants is \( \$ 5 \) per plant while the cost for the carrot seeds is \( \$ 2 \) per package. Write a system of inequalities for the two constraints that Paul and Art have. Be surs to define your variables. a. \( \$ \) Solve the system of inequalities to show possible combinations of cucumbers and carrots Paul and Art could feasibly produce.

Ask by Carter Herrera. in the United States
Mar 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Let \( x \) = number of cucumber plants \( y \) = number of carrot seed packages **Constraints:** 1. **Time Constraint:** \( 20x + 15y \leq 120 \) Simplified: \( 4x + 3y \leq 24 \) 2. **Cost Constraint:** \( 5x + 2y \leq 25 \) 3. **Non-Negativity:** \( x \geq 0 \) \( y \geq 0 \) **Feasible Combinations:** Any combination of \( x \) and \( y \) that satisfies all three inequalities is possible. For example: - \( x = 0 \), \( y = 8 \) - \( x = 5 \), \( y = 0 \) - \( x = 3 \), \( y = 4 \) These combinations ensure that Paul and Art stay within their time and budget limits.

Solución

Let \( x \) = number of cucumber plants \( y \) = number of packages of carrot seeds The two constraints are: 1. Weeding and watering time. Each cucumber requires 20 minutes and each carrot (package) requires 15 minutes. With 2 hours available (i.e. \(120\) minutes), we have \[ 20x + 15y \le 120. \] Dividing the entire inequality by 5 gives \[ 4x + 3y \le 24. \] 2. Start‐up cost. Cucumbers cost \(\$5\) each and carrots cost \(\$2\) per package, with a budget of \(\$25\): \[ 5x + 2y \le 25. \] Also, since negative amounts of plants or seeds are not allowed, we require \[ x \ge 0 \quad \text{and} \quad y \ge 0. \] --- To graph the feasible region defined by \[ \begin{cases} 4x + 3y \le 24, \\ 5x + 2y \le 25, \\ x \ge 0, \; y \ge 0, \end{cases} \] we first find the intercepts and intersection of the lines: 1. For \(4x + 3y = 24\): - \(x\)-intercept: set \(y=0\) \(\Rightarrow\) \(4x=24\) so \(x=6\). - \(y\)-intercept: set \(x=0\) \(\Rightarrow\) \(3y=24\) so \(y=8\). 2. For \(5x + 2y = 25\): - \(x\)-intercept: set \(y=0\) \(\Rightarrow\) \(5x=25\) so \(x=5\). - \(y\)-intercept: set \(x=0\) \(\Rightarrow\) \(2y=25\) so \(y=12.5\). 3. Find the intersection point of the two lines by solving \[ \begin{aligned} 4x + 3y &= 24, \\ 5x + 2y &= 25. \end{aligned} \] Solve the second equation for \(y\): \[ 2y = 25 - 5x \quad \Rightarrow \quad y = \frac{25 - 5x}{2}. \] Substitute into the first equation: \[ 4x + 3\left(\frac{25 - 5x}{2}\right) = 24. \] Multiply both sides by 2: \[ 8x + 3(25 - 5x) = 48. \] Simplify: \[ 8x + 75 - 15x = 48 \quad \Rightarrow \quad -7x = 48 - 75 = -27, \] so \[ x = \frac{27}{7} \approx 3.857. \] Substitute \(x = \frac{27}{7}\) back to find \(y\): \[ y = \frac{25 - 5\left(\frac{27}{7}\right)}{2} = \frac{25 - \frac{135}{7}}{2} = \frac{\frac{175 - 135}{7}}{2} = \frac{\frac{40}{7}}{2} = \frac{20}{7} \approx 2.857. \] Thus, the intersection point is \[ \left(\frac{27}{7}, \frac{20}{7}\right). \] --- The system of inequalities that Paul and Art have is: \[ \begin{aligned} 20x + 15y &\le 120 \quad \text{or equivalently} \quad 4x + 3y \le 24, \\ 5x + 2y &\le 25, \\ x &\ge 0, \\ y &\ge 0. \end{aligned} \] Any combination \((x, y)\) satisfying the above will be feasible. For example: - If \(x=0\), then from \(4(0)+3y \le 24\) we have \(y \le 8\) and from \(5(0)+2y \le 25\) we have \(y \le 12.5\). Thus, \(y\) can be at most 8. - If \(y=0\), then from \(5x \le 25\) we get \(x \le 5\) and from \(4x \le 24\) we get \(x \le 6\). Thus, \(x\) can be at most 5. The intersection of both constraints defines the feasible region, which is the region below both lines in the first quadrant.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's define the variables first: Let \( x \) represent the number of cucumber plants and \( y \) represent the number of packages of carrot seeds. Now, based on the information provided, we can set up a system of inequalities. 1. **Weeding and watering time constraint**: Each cucumber plant requires 20 minutes, and each package of carrots requires 15 minutes. Since Paul and Art have a total of 2 hours (or 120 minutes), the inequality for time becomes: \[ 20x + 15y \leq 120 \] 2. **Start-up costs constraint**: Cucumber starts cost \( \$5 \) each, and carrot seeds cost \( \$2 \) per package. With a budget of \( \$25 \), the inequality for cost is: \[ 5x + 2y \leq 25 \] Now, we can solve this system of inequalities to find the feasible combinations of cucumbers (x) and carrots (y): 1. From the first inequality \( 20x + 15y \leq 120 \): \[ \Rightarrow 4x + 3y \leq 24 \quad (\text{divided all terms by } 5) \] 2. From the second inequality \( 5x + 2y \leq 25 \): \[ \Rightarrow 5x + 2y \leq 25 \] Now let's graph the inequalities and find the vertices of the feasible region: ### Finding the Intersections 1. **Intercepts for \( 4x + 3y = 24 \)**: - Set \( x = 0 \): \[ 3y = 24 \Rightarrow y = 8 \] - Set \( y = 0 \): \[ 4x = 24 \Rightarrow x = 6 \] Intercepts are \( (0, 8) \) and \( (6, 0) \). 2. **Intercepts for \( 5x + 2y = 25 \)**: - Set \( x = 0 \): \[ 2y = 25 \Rightarrow y = 12.5 \] - Set \( y = 0 \): \[ 5x = 25 \Rightarrow x = 5 \] Intercepts are \( (0, 12.5) \) and \( (5, 0) \). ### Solving the System Next, we check the corner points of the visible region which are formed by the intersection of these lines. You can also calculate the point of intersection of the two lines, but typically this can be plotted to visualize where they overlap. On solving, you could find the points of intersection and determine where these inequalities hold. The coordinates represent the combinations of cucumber plants and carrot seed packages Paul and Art can plant within their constraints. ### Example Outcomes: 1. **If \( x = 0 \)**: They can afford up to \( 12 \) packages of carrots (i.e., \( y = 12 \)). 2. **If \( y = 0 \)**: They can plant \( 5 \) cucumber plants (i.e., \( x = 5 \)). 3. **Finding feasible integer combinations** could yield combinations like \( (5, 0) \), \( (4, 2) \), \( (3, 4) \), \( (0, 8) \), etc. By focusing on these constraints, Paul and Art can effectively plot and strategize about their planting!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad