Pregunta
upstudy study bank question image url

uotient Rule to determine the derivative of the function \( G(x)=\frac{2 x+5}{x-8} \)

Ask by Barrett Fitzgerald. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The derivative of \( G(x) = \frac{2x + 5}{x - 8} \) is \( G'(x) = -\frac{21}{(x - 8)^2} \).

Solución

Evaluate the derivative by following steps: - step0: Solution: \(\frac{d}{dx}\left(\frac{2x+5}{x-8}\right)\) - step1: Use differentiation rules: \(\frac{\frac{d}{dx}\left(2x+5\right)\times \left(x-8\right)-\left(2x+5\right)\times \frac{d}{dx}\left(x-8\right)}{\left(x-8\right)^{2}}\) - step2: Calculate: \(\frac{2\left(x-8\right)-\left(2x+5\right)\times 1}{\left(x-8\right)^{2}}\) - step3: Multiply: \(\frac{2\left(x-8\right)-\left(2x+5\right)}{\left(x-8\right)^{2}}\) - step4: Subtract the terms: \(\frac{-21}{\left(x-8\right)^{2}}\) - step5: Rewrite the fraction: \(-\frac{21}{\left(x-8\right)^{2}}\) - step6: Calculate: \(-\frac{21}{x^{2}-16x+64}\) To find the derivative of the function \( G(x) = \frac{2x + 5}{x - 8} \) using the Quotient Rule, we follow these steps: 1. **Identify the functions**: - Let \( u = 2x + 5 \) (the numerator) - Let \( v = x - 8 \) (the denominator) 2. **Apply the Quotient Rule**: The Quotient Rule states that if you have a function \( G(x) = \frac{u}{v} \), then the derivative \( G'(x) \) is given by: \[ G'(x) = \frac{u'v - uv'}{v^2} \] where \( u' \) is the derivative of \( u \) and \( v' \) is the derivative of \( v \). 3. **Calculate the derivatives**: - \( u' = \frac{d}{dx}(2x + 5) = 2 \) - \( v' = \frac{d}{dx}(x - 8) = 1 \) 4. **Substitute into the Quotient Rule**: \[ G'(x) = \frac{(2)(x - 8) - (2x + 5)(1)}{(x - 8)^2} \] 5. **Simplify the expression**: - The numerator becomes: \[ 2(x - 8) - (2x + 5) = 2x - 16 - 2x - 5 = -21 \] - Therefore, we have: \[ G'(x) = \frac{-21}{(x - 8)^2} \] Thus, the derivative of the function \( G(x) \) is: \[ G'(x) = -\frac{21}{(x - 8)^2} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the Quotient Rule has its origins in the rules for differentiation established in the 17th century? Mathematicians like Newton and Leibniz were busy laying the groundwork for calculus while developing strategies for handling complex functions. They recognized that when you divide two functions, you can't just apply the product rule directly—hence the birth of the Quotient Rule! When applying the Quotient Rule to \( G(x)=\frac{2x+5}{x-8} \), remember that the formula is \( \frac{f}{g}' = \frac{f'g - fg'}{g^2} \). Here, \( f = 2x + 5 \) and \( g = x - 8 \). Just plug in the derivatives: \( f' = 2 \) and \( g' = 1 \). Keep your eyes peeled for negative signs and double-check your work as those common slip-ups can lead to woefully incorrect answers!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad