Pregunta
upstudy study bank question image url

A solid round bar supports an axial load of 150 kN . The yield stress of the material is \( 540 \mathrm{MN} / \mathrm{m}^{2} \) Calculate the minimum diameter of the bar to support the load if a safety of factor of 2 is to be considered. (A) 26.6 mm (B) 3.5 mm (C) 15.9 mm (D) 23.2 mm

Ask by Collins Patel. in Singapore
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The minimum diameter of the bar should be 26.6 mm.

Solución

To determine the minimum diameter of the solid round bar that can support an axial load of 150 kN with a safety factor of 2, we'll follow these steps: ### **Given:** - **Axial Load (P):** 150 kN = 150,000 N - **Yield Stress (σ_yield):** \( 540 \, \text{MN/m}^2 = 540 \times 10^6 \, \text{N/m}^2 \) - **Safety Factor (SF):** 2 ### **Steps:** 1. **Calculate the Allowable Stress:** \[ \sigma_{\text{allow}} = \frac{\sigma_{\text{yield}}}{\text{SF}} = \frac{540 \times 10^6 \, \text{N/m}^2}{2} = 270 \times 10^6 \, \text{N/m}^2 \] 2. **Determine the Required Cross-Sectional Area (A):** The stress (\(\sigma\)) is related to the load and the area by: \[ \sigma = \frac{P}{A} \leq \sigma_{\text{allow}} \] Solving for A: \[ A \geq \frac{P}{\sigma_{\text{allow}}} = \frac{150,000 \, \text{N}}{270 \times 10^6 \, \text{N/m}^2} \approx 5.56 \times 10^{-4} \, \text{m}^2 \] 3. **Relate Area to Diameter:** For a circular cross-section: \[ A = \frac{\pi d^2}{4} \] Solving for \( d \): \[ d \geq \sqrt{\frac{4A}{\pi}} = \sqrt{\frac{4 \times 5.56 \times 10^{-4}}{\pi}} \approx 0.0266 \, \text{m} = 26.6 \, \text{mm} \] ### **Conclusion:** The minimum diameter required to safely support the axial load is **26.6 mm**. **Answer:** 26.6 mm

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the minimum diameter, we start by determining the maximum allowable stress that the material can withstand, considering the safety factor. The yield stress is \( 540 \, \text{MN/m}^2 \), and with a safety factor of 2, the maximum allowable stress (σ_allow) is: \[ \sigma_{\text{allow}} = \frac{\text{yield stress}}{\text{safety factor}} = \frac{540 \, \text{MN/m}^2}{2} = 270 \, \text{MN/m}^2 \] Next, we use σ_allow to calculate the cross-sectional area (A) required to support the axial load (F) of 150 kN: \[ A = \frac{F}{\sigma_{\text{allow}}} = \frac{150 \times 10^3 \, \text{N}}{270 \times 10^6 \, \text{N/m}^2} \approx 0.0005556 \, \text{m}^2 \] Now, since the area A of a circular cross-section is given by \( A = \frac{\pi d^2}{4} \), we can solve for the diameter (d): \[ d^2 = \frac{4A}{\pi} = \frac{4 \times 0.0005556}{\pi} \approx 0.000707 \, \text{m}^2 \] \[ d \approx \sqrt{0.000707} \approx 0.0266 \, \text{m} \approx 26.6 \, \text{mm} \] Therefore, the minimum diameter of the bar to support the load, considering the safety factor, is (A) 26.6 mm.

preguntas relacionadas

Latest Engineering Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad