Ryan decides to find the exponential function that passes through the points \( (3,135) \) and \( (1,60) \). Use these points to write the equation of his function of the form \( f(x)=a b^{x} \).
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the exponential function of the form \( f(x) = a b^{x} \) that passes through the points \( (3,135) \) and \( (1,60) \), we can set up a system of equations using these points. By substituting the coordinates into the equation, we have: 1. For point \( (3,135) \): \[ 135 = a b^3 \quad (1) \] 2. For point \( (1,60) \): \[ 60 = a b^1 \quad (2) \] Now, we can solve these equations. From equation (2), we can express \( a \): \[ a = 60/b \quad (3) \] Substituting equation (3) into equation (1), we get: \[ 135 = (60/b) b^3 \] This simplifies to: \[ 135 = 60b^2 \] Now, divide both sides by 60: \[ b^2 = \frac{135}{60} = \frac{27}{12} = \frac{9}{4} \quad (4) \] Taking the square root of both sides gives us: \[ b = \frac{3}{2} \] Now, substitute \( b \) back into equation (3) to find \( a \): \[ a = 60 / \left(\frac{3}{2}\right) = 60 \times \frac{2}{3} = 40 \] Thus, the equation of Ryan's function is: \[ f(x) = 40 \left(\frac{3}{2}\right)^x \]
