Solve. \( \begin{array}{l}-9 x-5 y=-4 \\ -3 x-3 y=12 \\ (\square, \square)\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To solve the system of equations: 1. From the first equation, \(-9x - 5y = -4\), we can rearrange it to express \(y\) in terms of \(x\): \[ -5y = 9x - 4 \implies y = \frac{9x + 4}{5} \] 2. Now, substitute \(y\) in the second equation \(-3x - 3y = 12\): \[ -3x - 3\left(\frac{9x + 4}{5}\right) = 12 \] Multiply the entire equation by 5 to eliminate the fraction: \[ -15x - 9x - 12 = 60 \implies -24x = 72 \implies x = -3 \] 3. Substitute \(x = -3\) back to find \(y\): \[ y = \frac{9(-3) + 4}{5} = \frac{-27 + 4}{5} = \frac{-23}{5} \] So, the solution to the system of equations is: \[ \left(-3, -\frac{23}{5}\right) \]
