Find equivalent fractions to compare. Then, write \( >,< \), or \( = \). \[ \begin{array}{l}\frac{7}{8} ? \frac{2}{6} \\ \quad= \\ \\ \frac{7}{8} \frac{2}{6}\end{array} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To compare the fractions \(\frac{7}{8}\) and \(\frac{2}{6}\), we can find equivalent fractions or convert them to a common denominator. For \(\frac{2}{6}\), we can simplify it to \(\frac{1}{3}\) because both the numerator and the denominator can be divided by 2. Now, let’s convert \(\frac{7}{8}\) and \(\frac{1}{3}\) to a common denominator. The least common multiple of 8 and 3 is 24. Now, convert each fraction: \[ \frac{7}{8} = \frac{7 \times 3}{8 \times 3} = \frac{21}{24} \] \[ \frac{1}{3} = \frac{1 \times 8}{3 \times 8} = \frac{8}{24} \] Now we can compare: \[ \frac{21}{24} > \frac{8}{24} \] So, the final answer is: \[ \frac{7}{8} > \frac{2}{6} \]
