I. Differentiate the following functions. Do NOT simplify once you have differentiated! [4 points each] [1] \( \quad y=\arctan \left(\ln \left(\sin ^{2} x\right)\right) \) [2] \( \quad y=\left(4 x^{2}-2\right)^{10}\left(5 x^{3}-x\right)^{5} \) [3] \( y=\frac{\sin \left(x^{3}-5 x^{2}\right)}{3 x^{2}-10} \) You must use the Quotient Rule on this problem.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
First, let's differentiate the first function: For \( y=\arctan \left(\ln \left(\sin ^{2} x\right)\right) \), using the chain rule, we find that the derivative is \[ y' = \frac{1}{1+ \left(\ln \left(\sin ^{2} x\right)\right)^{2}} \cdot \frac{2 \cos x}{\sin x} \cdot \frac{1}{\sin^2 x} = \frac{2 \cot x}{\sin^2 x (1 + (\ln(\sin^2 x))^2)}. \] Now, for the second function: For \( y=\left(4 x^{2}-2\right)^{10}\left(5 x^{3}-x\right)^{5} \), we apply the product rule: \[ y' = \left(4 x^{2}-2\right)^{10} \cdot 5\left(5 x^{3}-x\right)^{4} \cdot \frac{d}{dx}(5 x^{3}-x) + \left(5 x^{3}-x\right)^{5} \cdot 10 \left(4 x^{2}-2\right)^{9} \cdot \frac{d}{dx}(4 x^{2}-2). \] Next, for the third function, utilizing the quotient rule: For \( y=\frac{\sin \left(x^{3}-5 x^{2}\right)}{3 x^{2}-10} \), we know that \[ y' = \frac{(3x^2 - 10)\cos(x^3 - 5x^2)(3x^2 - 10) - \sin(x^3 - 5x^2)(6x)}{(3x^2 - 10)^2}. \] These derivatives are valuable for those delving into calculus, and noticing how different rules apply can add a layer of excitement to the learning journey!
