Solve the system of equations. \( \begin{array}{l}y=4 x+1 \\ 3 x+2 y=13\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
Let's solve the system of equations step by step! First, we substitute the expression for \(y\) from the first equation into the second equation: \(3x + 2(4x + 1) = 13\) Now, distribute the 2: \(3x + 8x + 2 = 13\) Combine like terms: \(11x + 2 = 13\) Now, subtract 2 from both sides: \(11x = 11\) Divide both sides by 11: \(x = 1\) Now that we have \(x\), we can find \(y\) using the first equation: \(y = 4(1) + 1 = 4 + 1 = 5\) So the solution to the system of equations is \(x = 1\) and \(y = 5\). To wrap it up, the solution can be written as the ordered pair \((1, 5)\).