Use Cauchy's Bound to find an interval \( [a, b] \) which contains all the real zeros of the polynomial \( P(x)=2 x^{4}-10 x^{3}+3 x^{2}-3 x+4 \) : If this is a quiz or exam question, all steps and logic must be shown for full credit. \( \square \) (Use interval notation.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find an interval \([a, b]\) that contains all the real zeros of the polynomial \( P(x) = 2x^4 - 10x^3 + 3x^2 - 3x + 4 \) using Cauchy's Bound, we first apply Cauchy's bounds to determine possible brackets for the roots. 1. **Identify the coefficients**: For the polynomial \( P(x) = 2x^4 - 10x^3 + 3x^2 - 3x + 4 \), the coefficients are \( a_0 = 2, a_1 = -10, a_2 = 3, a_3 = -3, a_4 = 4 \). 2. **Using Cauchy's bound**: The bounds can be calculated using the following formula: \[ R = 1 + \max \left( \frac{|a_0|}{|a_n|}, \frac{|a_1|}{|a_n|}, \frac{|a_2|}{|a_n|}, \frac{|a_3|}{|a_n|}, \frac{|a_4|}{|a_n|} \right) \] where \( n \) is the degree of the polynomial, \( a_n \) is the leading coefficient, and \( a_0, a_1, \ldots, a_n \) are the coefficients of the polynomial. 3. **Calculate the bound**: \[ R = 1 + \max \left( \frac{|2|}{2}, \frac{|-10|}{2}, \frac{|3|}{2}, \frac{|-3|}{2}, \frac{|4|}{2} \right) \] The values are: - For \( a_0 = 2 \): \( \frac{|2|}{|2|} = 1 \) - For \( a_1 = -10 \): \( \frac{|-10|}{|2|} = 5 \) - For \( a_2 = 3 \): \( \frac{|3|}{|2|} = 1.5 \) - For \( a_3 = -3 \): \( \frac{|-3|}{|2|} = 1.5 \) - For \( a_4 = 4 \): \( \frac{|4|}{|2|} = 2 \) Taking the maximum of these values, we have: \[ \max(1, 5, 1.5, 1.5, 2) = 5 \] Thus, we calculate: \[ R = 1 + 5 = 6 \] 4. **Specify the intervals**: Cauchy's bound concludes that all real roots of the polynomial \( P(x) \) lie within the interval \([-R, R]\), so: \[ [-6, 6] \] 5. **Final answer**: Therefore, the interval that contains all the real zeros of the polynomial \( P(x) \) is: \[ \boxed{[-6, 6]} \]
preguntas relacionadas
