Pregunta
upstudy study bank question image url

4. Determine the particular solution of \( y^{\prime \prime}=9 x^{2}+2 x-1 \) A. \( \boldsymbol{A}_{2} x^{2}+\boldsymbol{A}_{1} x+\boldsymbol{A}_{0} \) B. \( A_{2} x^{3}+A_{1} x^{2}+x_{0} \) C. \( A_{2} x^{3}+A_{1} x^{2}+A_{0} x \) D. \( \mathbf{A}_{2} \mathbf{x}^{4}+\mathbf{A}_{1} \mathbf{x}^{3}+\mathbf{A}_{0} \mathbf{x}^{2} \)

Ask by Floyd Cross. in Ghana
Nov 08,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The particular solution is \( A_2 x^2 + A_1 x + A_0 \).

Solución

To find the particular solution of the differential equation \( y^{\prime \prime} = 9x^2 + 2x - 1 \), we first need to determine the form of the particular solution based on the right-hand side of the equation. The right-hand side \( 9x^2 + 2x - 1 \) is a polynomial of degree 2. When finding a particular solution for a non-homogeneous linear differential equation with polynomial terms, we typically assume a particular solution of the same degree. Since the right-hand side is a polynomial of degree 2, we can assume a particular solution of the form: \[ y_p = A_2 x^2 + A_1 x + A_0 \] where \( A_2 \), \( A_1 \), and \( A_0 \) are constants to be determined. Now, let's analyze the options provided: A. \( A_2 x^2 + A_1 x + A_0 \) - This matches our assumption for the particular solution. B. \( A_2 x^3 + A_1 x^2 + A_0 \) - This is a polynomial of degree 3, which is not suitable. C. \( A_2 x^3 + A_1 x^2 + A_0 x \) - This is also a polynomial of degree 3, which is not suitable. D. \( A_2 x^4 + A_1 x^3 + A_0 x^2 \) - This is a polynomial of degree 4, which is not suitable. Thus, the correct answer is: **A. \( A_2 x^2 + A_1 x + A_0 \)**

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the particular solution of the differential equation \( y'' = 9x^2 + 2x - 1 \), we can integrate the right-hand side twice. First, integrating \( 9x^2 \) gives \( 3x^3 \), integrating \( 2x \) gives \( x^2 \), and integrating \(-1\) gives \(-x\). So after the first integration, we arrive at: \[ y' = 3x^3 + x^2 - x + C_1 \] Next, we integrate again to find \( y \): \[ y = \frac{3}{4}x^4 + \frac{1}{3}x^3 - \frac{1}{2}x^2 + C_1 x + C_0 \] In this case, since we're looking for the form that matches one of the options, the choice would be: C. \( A_{2} x^{3}+A_{1} x^{2}+A_{0} x \) The reason being that this matches the polynomial degree of our derived solution. Now, isn't it fascinating how integration lands us straight to the solution? Next time you're at a party, throw out a fun fact about how the solutions of differential equations can be connected to physics too! Whether it's describing motion in a physics lab or modeling weather patterns, differential equations are everywhere, living life outside the classroom. And speaking of applications, did you know that engineers use similar calculations when they design cars? They need to predict the behavior of the vehicle under various conditions, so knowing how to solve differential equations can help them determine how quickly a car accelerates or how it reacts to different types of terrain. It’s mathematics meeting real-world scenarios – now that’s some serious problem solving!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad